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Abstract

Leader election plays a crucial role in numerous distributed protocols, multi-agent sys-
tems and biological societies. Yet there is a fundamental gap in understanding its simplest
variant, such as, in cellular automata, employing components that are fully uniform, de-
terministic, and anonymous.

In this thesis, we investigate various one- and two-dimensional binary state cellu-
lar automata that elect a leader by transforming a random initial configuration to a state
where exactly one arbitrary cell is active (leader). A cellular automaton (CA) is a dis-
tributed system with a spatial topology where each processor (cell) is locally connected
to its neighbors. A transition rule is represented by a look-up table, which is uniform,
i.e., shared among all cells. We show that leader election is possible even in the minimal,
anonymous, and uniform architecture of a binary CA. Despite being one of the struc-
turally simplest distributed systems, a CA can exhibit various types of behavior, including
complex dynamics and self-organization.

Our methodology leverages evolution of CAs by employing genetic algorithms, where
chromosomes encoding candidate look-up tables undergo selection, cross-over and muta-
tion. Even though CA’s transition rules are just local and uniform, the leader election task
is global and requires coordination of all cells. The findings show that the emergent dy-
namics of the best binary CAs are characterized by sophisticated coordination and global
computation of cells, a product of spatio-temporal structures or events, namely regular
domains, particles and particle interactions, known from the theory of computational me-
chanics. This collision-based computing enables CA to carry and exchange information
over distances, eventually eliminating all but one candidate for leader. In two dimensions,
slowly-contracting regions connected by lines of active cells propagate throughout the
lattice and sweep any remaining active cells, before shrinking to a single cell (leader).
The best strategies for both instances show a remarkably high performance rate of 0.99.
In one-dimensional case the number of cells N is often modulo-restricted, such as in the
best-performing CA called the strategy of mirror particles, where N is restricted to 5 mod
6. We also analyze the dynamics of two-dimensional CAs by stability measures: the Der-
rida measure, and the damage spreading with a discrete version of Lyapunov stability. In
general, the more complex the dynamics, the better-performing the CA.

Furthermore, we identify fundamental limitations of leader election for one- and two-
dimensional CAs. More precisely, we show that configurations that are symmetric or
loosely-coupled are principally unsolvable. The proportion of these configurations, how-
ever, decreases dramatically with the system size. We enumerate such unsolvable config-
urations using linear algebra and group theory and formulate a universal upper bound on
performance for the anonymous leader election problem in CA.

Our results pave the way to new distributed algorithms that are more robust and effi-
cient than state-of-the-art systems. Our cellular automata consist of only binary compo-
nents, without any extra memory or communication capabilities, and therefore use min-
imal resources possible. Our findings are also relevant for better understanding leader
election in nature, in order to model biological processes such as morphogenesis of cell
differentiation.
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Abstrakt

Vol’ba šéfa má významnú úlohu v mnohých distribuovaných protokoloch, multiagen-
tových systémoch, a biologických spoločenstvách. Napriek tomu bol jej najzákladnejšı́
variant založený na plne uniformných, deterministických, a anonymných komponentoch,
ktorý je stelesnený v celulárnych automatoch, doposial’ neznámy.

Ciel’om tejto práce je skúmat’ rôznorodé jedno a dvojrozmerné binárne celulárne
automaty, ktoré si volia šéfa transformovanı́m náhodne vygenerovanej iniciálnej kon-
figurácie do stavu, kde je práve jedna bunka aktı́vna (šéf). Celulárny automat (CA) je
distribuovaný systém s priestorovou topológiou, kde je každá bunka (procesor) spojená
lokálne so susedmi. Prechodové pravidlo, reprezentované asociačnou tabul’kou, je uni-
formné, t.z. zdiel’ané všetkými bunkami. V práci ukážeme, že minimálna, anonymná, a
uniformná architektúra binárneho CA umožňuje úspešnú vol’bu šéfa. Napriek tomu, že
sa jedná o štrukturálne najjednoduchšı́ distribuovaný systém, CA vykazuje širokú škálu
správanı́, včetne komplexnej dynamiky a samoorganizácie.

Naša metodológia je založená na evolvovanı́ CA pomocou genetických algoritmov,
v ktorých sú chromozómy kódujúce prechodové tabul’ky (možné riešenia) vystavené se-
lekcii, krı́ženiu, a mutácii. Prechodová tabul’ka každej bunky je lokálna a uniformná, ale
vol’ba šéfa je globálna a vyžaduje koordináciu všetkých buniek. Naše zistenia ukazujú,
že emergentná dynamika najlepšı́ch binárnych CA je charakterizovaná sofistikovanou
koordináciou a globálnym výpočtom buniek, ktoré sú produktom priestorovo-časových
štruktúr teórie komputačnej mechaniky, menovite regulárnych domén, častı́c, a interak-
cie častı́c. Tento kolı́zny výpočtový model umožňuje CA reprezentovat’ informáciu a
prenášat’ ju na vzdialenosti, a tým eventuálne eliminovat’ všetkých okrem jedného kan-
didáta na šéfa. V dvoch rozmeroch, sa pomaly kontrahujúce oblasti, spojené lı́niami
aktı́vnych buniek, propagajú cez mriežku (toroid) a pohlcujú zvyšné aktı́vne bunky, až sa
napokon zmenšia do jedinej aktı́vnej bunky (šéfa). Najlepšie stratégie pre obidve inštancie
problému vykazujú pozoruhodne vysokú úspešnost’ až okolo 0.99. V jednorozmernom
prı́pade je počet buniek N často modulo-limitovaný, ako naprı́klad v najúspešnejšom
jednorozmernom CA, stratégii zrkadlových častı́c, kde sa N musı́ rovnat’ 5 mod 6. V
práci tiež analyzujeme dynamiku dvojrozmerných CA pomocou mier perturbačnej sta-
bility, konkrétne Derridovou mierou (Derrida measure), a šı́renı́m poškodenia (damage
spreading) s diskrétnou variantou Lyapunovej stability. Ukážeme že, čı́m komplexnejšia
dynamika, tým vyššia úspešnost’ CA.

Taktiež identifikujeme fundamentálne limitácie vol’by šéfa v jedno a dvojrozmerných
CA. Konkrétne, konfigurácie, ktoré sú symetrické alebo slabo prepojené sú principiálne
neriešitel’né. Pomer týchto konfiguráciı́ však rýchlo klesá s vel’kost’ou systému. Tieto
neriešitel’né konfigurácie vyčı́slime pomocou lineárnej algebry a teórie grúp, a sformulu-
jeme univerzálny horný limit úspešnosti pre anonymnú vol’bu šéfa v CA.

Naše výsledky dláždia cestu k novým, robustnejšı́m a efektı́vnejšı́m distribuovaným
algoritmom. Naše celulárne automaty pozostávajú iba z binárnych komponentov, bez
prı́davnej pamäte alebo komunikačných možnostı́, a preto sú ich zdroje a predpoklady
minimálne. Naše zistenia sú taktiež relevantné pre lepšie pochopenie vol’by šéfa v prı́rode,
ako naprı́klad pri biologických procesoch zodpovedných za morfogenézu bunkovej difer-
enciácie.
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support and guidance. I would like to acknowledge the EvCA group (especially
Wim Hordijk) for their pioneering work that triggered my interest in CA computa-
tion, and John Caughman for consultations on the theoretical part of my disserta-
tion. Also, I appreciate a help of Drew Blount, who did a good job proof-reading
the manuscript, Kristina Rebrova for handling all administrative tasks, and Vojto
Slovik for printing this dissertation. Finally, this journey would not have been
possible without the support of my family, especially my wife, who believed in
me and encouraged me to follow my dreams.



Contents

1 Introduction 1

2 Leader Election Problem 5
2.1 Distributed Algorithms . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 UID-Based Protocols . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Anonymous Protocols . . . . . . . . . . . . . . . . . . . 12

2.1.3.1 Deterministic Model . . . . . . . . . . . . . . . 12
2.1.3.2 Randomized Model . . . . . . . . . . . . . . . 13

2.1.4 Self-Stabilizing Protocols . . . . . . . . . . . . . . . . . 14
2.1.4.1 Self-Stabilizing Leader-Electing Protocols . . . 16

2.1.5 Our Distributed Model . . . . . . . . . . . . . . . . . . . 17
2.2 Biological Background . . . . . . . . . . . . . . . . . . . . . . . 18

3 Cellular Automaton 21
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 One-Dimensional CA . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Two-Dimensional CA . . . . . . . . . . . . . . . . . . . 23

3.2 Overview and Applications . . . . . . . . . . . . . . . . . . . . . 25
3.3 CA Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Computational Mechanics . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Regular Domain . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Particle Interaction . . . . . . . . . . . . . . . . . . . . . 33
3.4.4 Particle Catalog . . . . . . . . . . . . . . . . . . . . . . . 34

4 Cellular Automata Evolution 36
4.1 Introduction to Genetic Algorithms . . . . . . . . . . . . . . . . . 36
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Leader Election in Cellular Automata 40
5.1 Leader Election as CA Computational Task . . . . . . . . . . . . 42
5.2 Model of Cellular Automata Evolution . . . . . . . . . . . . . . . 43

5.2.1 Fitness and Performance . . . . . . . . . . . . . . . . . . 44
5.3 Leader Election in One-Dimensional Cellular Automata . . . . . . 45

5.3.1 Results of Evolving Cellular Automata . . . . . . . . . . 46
5.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.2.1 Strategy of Mandatory Function . . . . . . . . . 49
5.3.2.2 Density Reduction . . . . . . . . . . . . . . . . 49

x



CONTENTS

5.3.2.3 Divide and Eliminate . . . . . . . . . . . . . . 51
5.3.2.4 First Particle-Based Strategy . . . . . . . . . . 52
5.3.2.5 Strategy of Mirror Particles . . . . . . . . . . . 54
5.3.2.6 Improved Strategy of Mirror Particles . . . . . . 58
5.3.2.7 Transition Table Density . . . . . . . . . . . . . 61
5.3.2.8 Overall N-Modulo Dependence . . . . . . . . . 61

5.4 Leader Election in Two-Dimensional Cellular Automata . . . . . 65
5.4.1 Results of Evolving Cellular Automata . . . . . . . . . . 66
5.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.2.1 Performance and Strategies . . . . . . . . . . . 70
5.4.2.2 Density Minimization . . . . . . . . . . . . . . 73
5.4.2.3 Leader Election Targeting N = 192 . . . . . . . 74
5.4.2.4 Leader Election Targeting N = 292 . . . . . . . 77
5.4.2.5 Transition Table Density . . . . . . . . . . . . . 80
5.4.2.6 Derrida Measure . . . . . . . . . . . . . . . . . 81
5.4.2.7 Damage Spreading . . . . . . . . . . . . . . . . 83

5.4.3 Asynchronous Leader Election . . . . . . . . . . . . . . . 85

6 Limitations and Performance Upper Bound 89
6.1 Symmetric Configurations . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 One-Dimensional Symmetric Configurations . . . . . . . 91
6.1.2 Two-Dimensional Symmetric Configurations . . . . . . . 100

6.2 Loosely-Coupled Configurations . . . . . . . . . . . . . . . . . . 117
6.2.1 One-Dimensional Loosely-Coupled Configurations . . . . 118
6.2.2 Two-Dimensional Loosely-Coupled Configurations . . . . 123

6.3 Upper Bound on Performance . . . . . . . . . . . . . . . . . . . 126
6.3.1 One-Dimensional Upper Bound on Performance . . . . . 127
6.3.2 Two-Dimensional Upper Bound on Performance . . . . . 131

7 Conclusion 135

Bibliography 139

xi



List of Figures

2.1 Example of leader election on non-anonymous (UID-based) ring. . 11
2.2 Morphogenesis of fruit fly Drosophila as an example of leader

election (symmetry breaking) in nature [66]. . . . . . . . . . . . . 19

3.1 Schematic of the configuration update for a binary one-dimensional
cellular automaton. The transition table represents ECA 110. . . . 24

3.2 An example space-time diagram of ECA 110 starting at random
initial configuration. ECA 110 exhibits complex dynamics at the
edge between stability and chaos. . . . . . . . . . . . . . . . . . . 25

3.3 Schematic of the configuration update for a binary two-dimensional
cellular automaton, namely Woltz and deOliveira’s CA perform-
ing density classification. . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Example of space-time diagrams of 2D CA. Figures show CA at
6 stages starting from a random initial configuration at time t0

reaching a final configuration with all inactive cells at time t125.
The transition table represents Wolz-deOliveira’s CA [98] for the
density classification task. . . . . . . . . . . . . . . . . . . . . . 27

3.5 Regular domains of ECA 55: (left) a two-phase domain Λ0 and
(right) a one-phase domain Λ1. . . . . . . . . . . . . . . . . . . . 31

3.6 A domain filter construction and an example of space-time-diagram
filtration (partially reproduced from [48]. . . . . . . . . . . . . . 33

3.7 (a) Space-time diagram and (b) filtered version with particle iden-
tification [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Genetic algorithm as a cyclic process. . . . . . . . . . . . . . . . 38

5.1 The strategy of mandatory transition function - space-time dia-
grams of (a) successful and (b) unsuccessful leader election. . . . 48

5.2 The density reduction strategy - space-time diagrams of (a) suc-
cessful and (b) unsuccessful leader election. . . . . . . . . . . . . 50

5.3 The divide and eliminate strategy - space-time diagrams of (a)
successful and (b) unsuccessful leader election. . . . . . . . . . . 51

5.4 The first particle-based strategy - space-time diagrams of (a) suc-
cessful and (b) unsuccessful leader election. . . . . . . . . . . . . 54

5.5 The strategy of mirror particles - space-time diagrams of (a) suc-
cessful and (b) unsuccessful leader election. . . . . . . . . . . . . 56

5.6 The strategy of mirror particles - space-time diagrams annotated
with particles showing typical behavior for all N modulo 6 classes.
The number of cells N goes from 149 (top left) to 154 (bottom right). 59

xii



LIST OF FIGURES

5.7 The improved strategy of mirror particles - space-time diagrams
of (a) successful and (b) unsuccessful leader election. . . . . . . . 60

5.8 Relation between the fitness and λ (transition table density) for
one-dimensional leader election showing all chromosomes from
both evolutionary sets. Note a critical high-performing region
around λ = 0.46. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.9 The N-modulo universal strategy - space-time diagrams of (a) suc-
cessful and (b) unsuccessful leader election. . . . . . . . . . . . . 63

5.10 Relation between performance P100
uni f 149(φ) and the ratio of cumu-

lative performance for all N modulo 6 classes (representatives):∑154
N=149 P100

uni f N (φ)

P100
uni f 149(φ)

. N-modulo universality (y-axis) represents the num-

ber of modulo classes (out of 6 defined) that produce similar per-
formance as the training number of cells N = 149. . . . . . . . . . 64

5.11 Fitness of the best chromosomes from each population of the three
evolutionary sets: DM, LE 192, and LE 292. . . . . . . . . . . . . 68

5.12 Performance of the last best chromosomes from three evolution-
ary sets (DM, LE 192, and LE 292) for the square sizes N =

12, . . . , 402 calculated as an average over 104 runs. The maximal
time tMAX allowed for leader election is set to 300 steps in the left
and 1000 in the right column. . . . . . . . . . . . . . . . . . . . . 71

5.13 Example space-time diagrams of the best-performing density-minimizing
CA on lattice size N = 402. Figures show a CA computation
starting from an initial configuration with active cells distributed
uniformly (time t0), followed by 7 state snapshots. The CA opti-
mized for density minimization fails to elect a leader and reaches
a final configuration with 7 active cells at time t94. . . . . . . . . . 72

5.14 Performance of the best density-minimizing CA for the square
sizes N = 12, . . . , 402 calculated as an average over 104 runs using
uniform and density-uniform initial distributions. The maximal
time tMAX allowed for leader election in (a) and (b) is 300. Figures
(a) and (b) show the ratio of runs that end in a fixed point with
a single active cell (1 L FP), two active cells (2 Ls FP), three or
more active cells (3+ Ls FP), or no fixed point (No FP). Figure (c)
plots the number of ones in a final configuration. . . . . . . . . . 74

5.15 Example space-time diagrams of the best-performing leader-electing
CA targeting N = 192 on lattice size N = 402. Figures show a CA
computation starting from an initial configuration generated by a
uniform distribution (time t0), followed by 7 state snapshots. The
CA reaches a final configuration with a single active cells at time
t215. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xiii



LIST OF FIGURES

5.16 Performance of the best leader-electing CA targeting 192 for the
square sizes N = 12, . . . , 402 calculated as an average over 104

runs using uniform and density-uniform initial distributions. The
maximal time tMAX allowed for leader election in (a) and (b) is
300. Figures (a) and (b) show the ratio of runs that end in a fixed
point with a single active cells (1 L FP), two active cells (2 Ls FP),
three or more active cells (3+ Ls FP), or no fixed point (No FP).
Figure (c) plots the number of ones in a final configuration. . . . . 76

5.17 Example space-time diagrams of the best-performing leader-electing
CA targeting N = 292 on lattice size N = 402. Figures show a CA
computation starting with a uniform initial distribution (time t0),
followed by 7 state snapshots. The CA reaches a final configura-
tion with a single active cells at time t212. . . . . . . . . . . . . . . 77

5.18 Performance of the best leader electing CA targeting 292 for the
square sizes N = 12, . . . , 402 calculated as an average over 104

runs using uniform and density-uniform initial distributions. The
maximal time tMAX allowed for leader election is 300 in (a) and
(b), and 1000 in (c) and (d). Figures (a-d) show the ratio of runs
that end in a fixed point with a single active cell (1 L FP), two
active cells (2 Ls FP), three or more active cells (3+ Ls FP), or no
fixed point (No FP). Figure (e) plots the number of ones in a final
configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.19 Relation between the fitness and λ (transition table density) of
CAs from the three evolutionary sets: DM, LE 192, and LE 292.
Note that a critical high-performing region for leader election (b-
c) correlates with λ ∈ (0.48, 0.6) excluding 0.5. . . . . . . . . . . 80

5.20 Derrida curves for 100 randomly generated two-dimensional CAs
with Moore neighborhood, and the last best CAs from all evolu-
tions for the density minimization task (DM), and the leader elec-
tion task with N = 192 (LE 192) and N = 292 (LE 292). Averages
over all CAs and 100 configurations per each Hamming distance
dt are plotted. Note that the identity line represents the critical dy-
namical regime, i.e., the closer to the line, the more complex the
dynamics. The portion shown in the plot is limited to dt ≤ 0.5. . . 82

5.21 Damage spreading for 100 randomly generated two-dimensional
CAs with Moore neighborhood, and the last best CAs from all
evolutions for the density minimization task (DM) and the leader
election task with N = 192 (LE 192) and N = 292 (LE 292). Aver-
ages for all CAs over 1000 runs are plotted. . . . . . . . . . . . . 84

xiv



LIST OF FIGURES

5.22 Relation between the fitness and λ (transition table density) of
asynchronous CA from the density minimization (DM Async)and
leader election (LE Async) evolutionary sets. Note that a critical
high-performing region for leader election (b) correlates with λ ∈
(0.61, 0.64). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.23 Example space-time diagrams of the best-performing asynchronous
leader-electing CA on lattice size N = 402. Figures show a CA
computation starting from an initial configuration generated by
using uniform distribution (time t0), followed by 7 state snapshots.
The CA fails to elect a leader and reaches a final configuration
with 2 active cells at time t116. . . . . . . . . . . . . . . . . . . . 87

5.24 Performance of the best asynchronous leader-electing CA for the
square sizes N = 12, . . . , 402 calculated as an average over 104

runs using uniform and density-uniform initial distributions. The
maximal time tMAX allowed for leader election is 300 in (a) and
(b). Figures (a) and (b) show the ratio of runs that end in a fixed
point with a single active cells (1 L FP), two active cells (2 Ls FP),
three or more active cells (3+ Ls FP), or no fixed point (No FP).
Figure (c) plots the number of ones in a final configuration. . . . . 88

6.1 A space-time diagram of CA computation on a one-dimensional
symmetric configuration. Note that leader election from a sym-
metric configuration is impossible. . . . . . . . . . . . . . . . . . 92

6.2 Space-time diagrams of CA computation on a two-dimensional
symmetric configuration showing a lattice at three consecutive
time steps. Note that leader election from a symmetric config-
uration is impossible. . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 A space-time diagram of leader-electing CA on a one-dimensional
loosely-coupled configuration, which is a configuration where dis-
tance of active cells ≥ 2r + 1. Note that leader election from a
loosely-coupled configuration (a fixed point) is impossible. . . . . 118

6.4 Space-time diagrams of CA computation on a two-dimensional
loosely-coupled configuration, which is a configuration where dis-
tance of active cells ≥ 2r + 1. Note that leader election from
loosely-coupled configurations (fixed points) is impossible. . . . . 122

6.5 Probability of selecting insolvable binary configurations for one-
dimensional symmetric and/or loosely-coupled configurations us-
ing uniform and density-uniform distributions and radius r = 3. . . 129

xv



LIST OF FIGURES

6.6 Probability of selecting insolvable binary configurations for two-
dimensional symmetric and/or loosely-coupled configurations us-
ing uniform and density-uniform distributions and Moore neigh-
borhood, i.e., a square neighborhood with radius r = 1. . . . . . . 133

xvi



List of Tables

5.1 Performance of the strategy of mandatory transition function us-
ing uniform and density-uniform distributions. . . . . . . . . . . . 49

5.2 Performance of the density reduction strategy using uniform and
density-uniform distributions. . . . . . . . . . . . . . . . . . . . . 50

5.3 Performance of the divide and eliminate strategy using uniform
and density-uniform distributions. . . . . . . . . . . . . . . . . . 52

5.4 The particle catalog of the first particle-based strategy. . . . . . . 53
5.5 Performance of the first particle-based strategy using uniform and

density-uniform distributions. . . . . . . . . . . . . . . . . . . . . 54
5.6 The particle catalog of the strategy of mirror-particles. . . . . . . 55
5.7 Performance of the strategy of mirror particles using uniform and

density-uniform distributions. . . . . . . . . . . . . . . . . . . . . 57
5.8 The strategy of mirror particles - typical results of the crucial

leader-electing interactions with respect to N modulo 6 classes. . . 58
5.9 Performance of the improved strategy of mirror particles using

uniform and density-uniform distributions. . . . . . . . . . . . . . 61
5.10 Performance of the N-modulo universal strategy using uniform

and density-uniform distributions. . . . . . . . . . . . . . . . . . 65
5.11 Performance of the best density-minimizing CA using uniform

and density-uniform initial distributions. . . . . . . . . . . . . . . 73
5.12 Performance of the best leader-electing CA targeting N = 192

using uniform and density-uniform initial distributions. . . . . . . 76
5.13 Performance of the best leader-electing CA targeting N = 292 us-

ing uniform and density-uniform initial distributions and the max-
imal time tMAX = 300 and tMAX = 1000. . . . . . . . . . . . . . . 78

6.1 The mandatory rows for any leader preserving φ of a binary CA
with r = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 The mandatory rows for any leader preserving φ of a binary two-
dimensional CA with Moore neighborhood. . . . . . . . . . . . . 123

6.3 Performance of the improved strategy of mirror particles, the best
one-dimensional binary cellular automaton with radius r = 3, com-
pared to theoretical upper bound performance. Both uniform and
density-uniform distributions are considered. . . . . . . . . . . . 130

6.4 Maximal performance of the best two-dimensional binary cellu-
lar automata with Moore neighborhood from Sections 5.4.2.3 and
5.4.2.4 compared to theoretical upper bound performance. Both
uniform and density-uniform distributions are considered. . . . . . 134

xvii



1
Introduction

It is surprising that structurally homogeneous and simple systems, natural as well

as artificial, can generate highly complex dynamics. Currently we are at the be-

ginning of a new era, in which the limits of prevalent reductionism in science

are questioned. Consequently, the complexity approach, emphasizing holistic and

emergent properties of systems, is ambitiously becoming a new paradigm. For me,

it is very thrilling to be a part of this scientific exploration. For a long time, I have

been wondering about the universality of self-organization and the often striking

transition from order to complexity and chaos. The mystery of life, its autopo-

etic nature and an aim to see beyond boundaries which formally detach individual

agents are the most crucial motivational factors, stimulating my imagination and

pushing me towards new challenges.

In the last decades, natural and social scientists alike are increasingly facing

problems related to the principal concepts of complexity and self-organization

[37, 75]. These phenomena are usually closely tied to distributed, decentral-
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ized, systems demonstrating (to some extent) unpredictable dynamics. There is

a tremendous discrepancy between conventionally designed logic-based compu-

tation and the robust continuously-adapting behavior of the systems observed in

nature. A better understanding of underlying global organizational principles and

limitations is, therefore, critical. The primary goal of this thesis is to explain how

global coordination, information processing and information exchange emerge

from local interactions.

In order to do that, we tackle a core distributed problem, the leader election

problem; introduced by Smith [89]. Given a net of processors, the problem is to

design a distributed algorithm that elects a single processor, a leader, starting from

an initial configuration where all the processors are in the same state. The purpose

of leader election is to choose a processor that will coordinate activities of the

system. This is an important prerequisite to many distributed algorithms for such

tasks as finding maximal cliques, exploring graphs, and broadcasting. The most

common approach is to consider leader election of distinguishable unique pro-

cessors by applying a search for a processor with particular minimal or maximal

ID [41]. The probabilistic Las Vegas algorithms, which assign IDs to processors

randomly, may run forever but they terminate within finite time on average [56].

Even though the leader election problem originates in the theory of distributed

algorithms, our model and methodology are applied in the unconventional con-

text of multi-agent systems and complexity research. To be able to analyze the

system dynamics, we opt for a distributed system with the simplest structure, bi-

nary cellular automaton, which has been extensively used to study various aspects

of dynamical systems and artificial life. Cellular automata ware introduced by a

pioneer of the computational age, von Neumann [77], as an alternative to a con-
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ventional computer architecture that was mostly serial. Despite being one of the

structurally simplest distributed systems, a CA can exhibit various types of behav-

ior, including complex dynamics and self-organization [62, 96, 97]. We tackle the

most difficult, however most fundamental, variant of leader election, in the mini-

mal, anonymous, and uniform architecture of a binary one- and two-dimensional

CAs.

Our methodology leverages evolution of CAs [74, 28] by employing genetic

algorithms [73], a standard optimization technique—an advanced gradient-descent

climb—to find (sub)optimal solutions, i.e., CA’s transition tables, for leader elec-

tion. The findings [8, 9, 11] show that the emergent dynamics of the best CAs

is characterized by sophisticated coordination and global computation of cells, a

product of spatial-temporal structures or events, namely regular domains, parti-

cles and particle interactions, known from the theory of computational mechanics

[27, 55, 48, 49]. These approaches have been applied at the Santa Fe Institute

by former EvCA (Evolutionary Cellular Automata) and CM (Computational Me-

chanics) groups [54] led by J. Crutchfield and M. Mitchell to understand natural

systems and also to engineer decentralized artificial systems which can give rise

to emergent computation. The best-performing CAs for leader election show a

remarkably high performance of 0.94 − 0.99. Our CA model has O(N) time com-

plexity, and each processor (cell) uses just O(1) memory. We also analyze the

dynamics of two-dimensional CAs by stability measures: the Derrida measure

[34, 86], and the damage spreading [83, 68] with a discrete version of Lyapunov

stability [17]. A perturbation of CA’s configuration, whose dynamics are closer

to the critical complex regime (also called the edge of chaos), will not die out

nor spread out. The critical regime has been shown optimal for information pro-
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cessing and computing. Our findings agree with the general properties of the

complex regime, namely, more complex the CA’s dynamics, more successful the

leader election. Further, we briefly introduce and analyze two-dimensional asyn-

chronous leader election.

In this thesis we ask whether a better-performing CA than we found could ex-

ist. We identify general limitations that no one- or two-dimensional CA can over-

come [10, 12]. We show that a minimal, fully uniform and anonymous (no identi-

fications) architecture of CA cannot produce a correct output from all input con-

figurations. We enumerate such unsolvable configurations, both symmetric and

loosely-coupled configurations, using linear algebra and group theory and formu-

late a universal upper bound on performance for the anonymous one-dimensional

leader election problem. Since a transition rule is synchronous and uniform, con-

figuration symmetry is maintained through computation, and therefore a desired

state with a single active cell (leader), which is inherently non-symmetric, could

not be reached. Loosely-coupled configurations are configurations where active

cells are too far from each other, and therefore by implications of leader elec-

tion task must be fixed points. That again prevents a successful leader election.

Despite these problems, we show that the proportion of insolvable configurations

decreases dramatically with the system size.

Our findings are directly applicable for design of more effective and robust

distributed protocols and networks. We also suggest that by CA-based leader

election we could better understand and model biological processes such as mor-

phogenesis of cell differentiation [66, 76], where leader election breaks symmetry

in a newly formed organism.
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A leader is best when people
barely know he exists.

Witter Bynner (1881-1968) 2
Leader Election Problem

Leader election [89] addresses a very rudimentary issue. How could the compo-

nents of a distributed system reach a general, global agreement on a single individ-

ual leader? Leader election, in contrast with its simple and intuitive definition, is

due to its applications one of the most extensively studied and complicated prob-

lems. As a basic routine for global coordination in artificial and natural systems,

it is widely used in the theory of distributed algorithms [35, 64, 40], sociobiology

[90, 61], development biology [66, 76], and multi-agent systems [59].

Even though the CA model and methodology we employ is not usually related

to distributed algorithms, to understand why the problem is non-trivial we dis-

cuss various (standard) distributed algorithms for leader election. Moreover, we

present a brief (socio)biological background and illustrate the functions of leader

election on selected examples.
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2.1. DISTRIBUTED ALGORITHMS

2.1 Distributed Algorithms

The leader election problem, also known as distributive choice problem, was orig-

inally introduced by Smith in 1971 [89] and soon after became one of the most

fundamental problem in distributed computing. Informally, the processors in a

distributed network, each executing the same algorithm, are required to elect a

unique processor (a leader).

The goal of leader election is to break the system’s symmetry by choosing a

single processor that will coordinate global activities. It is also a prerequisite of

other distributed algorithms such as finding maximal cliques, exploring graphs,

and broadcasting. By choosing a leader it is possible to execute centralized pro-

tocols in a decentralized environment. There also exist numerous other leader

election algorithms depending on the chosen topology (e.g., ring, complete graph,

and matrix), on the amount of information processors can handle (e.g., global

orientation, net size), and on self-stability etc.

In this thesis we deal exclusively with anonymous leader election in one- and

two-dimensional toroidal topologies. Considering uniform and simple topologies

allows dynamics analysis, such as that using the theory of computational mechan-

ics. Moreover, the ring and toroid are the drosophila of distributed computing,

as many interesting challenges already reveal the root of the problem in these

fundamental topologies.

This section gives the reader a general overview of leader electing distributed

algorithms, with special focus on memory and time complexity, model assump-

tions and limitations. Since our cellular automaton model can be understood

without much knowledge about distributed algorithms, and our approach is not
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prevalent in this field, we omit the construction details of most algorithms. First,

we start with the core definitions and then we briefly show the most fundamen-

tal findings for UID-based and anonymous, deterministic and randomized, and

self-stabilizing instances of the problem. For more information about distributed

algorithms for leader election, we refer the reader to the many excellent textbooks

that already cover these areas, e.g., [70, 91].

2.1.1 Definitions

Definition 2.1.1. (Distributed System) A distributed system is a set of n communi-

cating processors (state machines) P1, P2, . . . , Pn. Each processor is represented

as a distinct node of the directed graph G = (V, E) where V is a set of nodes

and E is a set of communication links (edges) such that ∀p, q ∈ V, (p, q) ∈ E iff

processor p can communicate by sending a message to or sharing memory with

processor q. Symbol Σi denotes the set of states of processor Pi. A configuration

is a vector c ∈ Γ = Σ1 × . . .Σn of the processors’ states. A transition relation δi

defines an event (e.g. send message, read from/write to registry) and a change of

state of processor Pi according to the chosen communication model.

Definition 2.1.2. (Computation) A computation e of the system is a finite or infi-

nite sequence of configurations c0, c1, . . . where c j+1 is reached from c j by a step

in which transition relations δ1, . . . , δn are applied, starting from initial configura-

tion c0. A computation is said to be maximal if the sequence is either infinite or it

is finite and no processor is enabled in the final configuration. The set of maximal

computations starting from initial configurations B ⊂ Γ is denoted εB, where ε is

the set of all possible maximal computations (i.e. ε = εΓ)
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Definition 2.1.3. (Ring) A distributed system consisting of n-processors arranged

in a cycle, where each processor has exactly two neighbors.

(Unidirectional Ring) A ring where edges (links) are oriented in one direction, so

that each processor can retrieve information only from one processor, called its

predecessor.

(Bidirectional Ring) A ring where edges (links) are not oriented, thus each pro-

cessor can retrieve information from both neighboring processors.

Definition 2.1.4. (Message Passing Communication Model) Processors commu-

nicate by sending messages (taken from some alphabet M) to each other. The

state of each processor contains a special component, buffi, in which incoming

messages are buffered. The possible events include state change, sending of a

message on some edge e ∈ E and delivering a message.

Definition 2.1.5. (Shared Memory Communication Model) Processors communi-

cate via a common memory area that contains a set of shared variables (registers).

There exist various types of registers differing in supported atomic operations

(e.g. read/write, read-modify-write) and access (e.g. single-writer single-reader,

single-writer multi-reader). Depending on type, processors can read, write or

modify the content of register. Let R1, . . . ,Rm be m registers associated with pro-

cessors P1, . . . , Pn. A configuration is then a vector c ∈ Σ1 × . . .Σn × T1 × . . .Tm

where T j is the set of possible values of register R j.

Remark. Shared memory models for leader election on rings usually presume that

each processor has its own register, thus m = n. Each register is only writable by

its associated processor, but neighboring processors are also allowed to read its

content.
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Definition 2.1.6. (Uniformity) A distributed system (algorithm) is called uniform

if the number of processors n is not known to the processors. If n is known, the

algorithm is called non-uniform.

Remark. In some cases, expression uniformity has much wider scope. Namely,

it also refers to the attribute of distributed systems in which the processors’ state

sets and transition relations are the same, thus Σ1 = Σ2 = . . . = Σn = Σ and

δ1 = δ2 = . . . = δn = δ. This type of uniformity is considered to be a natural

requirement for most distributed systems.

Definition 2.1.7. (Anonymity) A distributed system is anonymous if processors

are identical (not distinguishable), i.e. they do not have any form of identity. Oth-

erwise, each processor has unique identity (UID) and system is non-anonymous.

Definition 2.1.8. (Timing) In a synchronous system an algorithm proceeds in

rounds, so the processors operate simultaneously in lockstep by using the same

clock. In each round a processor receives messages that were sent to it in that

round, performs a local computation and then sends messages. The shared mem-

ory version of this model is called PRAM. In an asynchronous system processors

take steps in arbitrary order and each processor has its own independent clock.

Definition 2.1.9. (Self-Stabilization) Following Dijkstra’s original notion, a pro-

tocol P is self-stabilizing if, starting from any initial configuration, every execu-

tion of P eventually reaches a point from which its behavior is correct. Formally

[84], the protocol P is self-stabilizing for the problem PR if and only if there

exists a predicate L defined on configurations such that:
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2.1. DISTRIBUTED ALGORITHMS

• Convergence - All computations reach a configurations that satisfies L.

∀e = (c1, c2, . . .) ∈ ε,∃n ≥ 1, cn ` L

• Correctness - All computations, from L, satisfy the problem PR. Formally:

∀e ∈ εL, e ` PR

Here x ` P means that x satisfies the predicate P.

Definition 2.1.10. (Leader Election) We assume that there is a distinguished sub-

set of possible processor states in which a processor is considered to be a leader.

To solve the leader election problem, a distributed system must reach a config-

uration where the state of exactly one processor is, and then remains, within a

defined subset, while the states of all other processors remain outside that sub-

set. Naturally, it is presumed that all processors must have the same transition

relation (function), otherwise the problem would be trivial. Initial configuration

in the classic definition are expected to be homogenous configurations with all

processors in the same non-leader state, whereas in self-stabilizing versions the

initial configuration is arbitrary.

Remark. Besides this general definition, the leader election problem has several

other variants. For example, in a system with distinct UIDs one may require that

leader must be the processor with the maximal (or minimal) UID. Also, one may

require that all processors will know the UID of the elected leader.

2.1.2 UID-Based Protocols

UID-based protocols, in which processors are required to be distiguishable by

(comparable) unique identifiers (UIDS), were historically the first distributed al-

gorithms for leader election. In this case, the processor with a particular (minimal
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or maximal) UID is elected. Therefore, this approach is often referred to as a

decentralized extrema-finding problem (Figure 2.1).

The basic algorithm for unidirectional rings was given by Le Lann in 1977

[64]. The idea is that each processor sends a message with its UID around the

ring. When a processor receives a message with UID, it always stores the UID

and passes it further. This routine continuous until each processor receives back

its own identity, which indicates that all messages have passed the full cycle. A

processor becomes leader if and only if it has the smallest identifier among all

identifiers collected during execution. The algorithm requires O(N2) messages in

the worst and average case. Chang and Roberts [22] adapted Le Lann’s algorithm

by reducing the number of transferred messages. When processor receives a mes-

sage it compares the UID in this message with its own. If the delivered UID is

greater then it keeps passing it, otherwise discards the incoming message. By this

improvement the average-case message complexity decreases to O(N log N).

Figure 2.1: Example of leader election on non-anonymous (UID-based) ring.

Hirschberg and Sinclair [51] developed a leader election algorithm for bidirec-

tional rings with a worst-case message complexity of O(N log N), which is optimal

in O-notation. The idea is that rather than sending messages all the way around
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the ring, each processor sends messages in both directions that turn around and

come back. Such ”boomerang” method repeats to successively greater distances

of power 2. Similar algorithms for unidirectional rings were proposed soon after

by Peterson [80], and Dolev, Klawe and Rodeh [36].

In a UID-based system, each processor keeps the UID-value of its candidate

for leadership in regular memory, therefore, at least N states per processor is re-

quired. Obviously all mentioned algorithms have O(N) time complexity.

Another approach to distinguish processors is based on orientation (compass).

Each processor is assigned to some coordinates within the space of Zd and through

the distance measurement by sending of signals, the lexicographically lowest pro-

cessor is elected leader [78].

2.1.3 Anonymous Protocols

Now we ask, what kind of a distributed system could be topology-robust, such that

processors can be freely added or removed during runtime? Intuitively, without

a central entity that assign unique IDs to the components, keeping all processors

distinct would be challenging. Requiring each (new) component to register vio-

lates the very essence of distributed control. In this section we present so-called

anonymous protocols, which consist of processors that do not carry an identity

and are in fact indistinguishable (see Definition 2.1.7).

2.1.3.1 Deterministic Model

We start this section with one of the most crucial impossibility results that clearly

shows how symmetry and leader election are interrelated. In fact, leader election
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is often referred to as symmetry breaking.

Theorem 2.1.1. (Angluin[3]) There does not exist a terminating deterministic

algorithm for the leader election problem in an anonymous network due to the

fact that full symmetry of the system cannot be broken without allowing either an

infinite computation or an erroneous result.

Remark. This holds for both synchronous and asynchronous, as well for uniform

and non-uniform protocols.

Imagine a deterministic, anonymous system starting from the initial configura-

tion in which all processors are in the same state. At first glance it is obvious that

such a system is fully symmetric. By simple induction it can be shown that in each

computational step, full uniformity of states is maintained, thus, the processors are

always in the same state and no leader can be elected.

2.1.3.2 Randomized Model

Randomized algorithms use random assignment of pseudo-IDs to processors, break-

ing symmetry in anonymous networks. After this initial step, a deterministic

leader election algorithm is employed. Unlike UID-based algorithms presented

in section 2.1.2, randomized algorithms must be able to handle situations where

multiple processors generate the same pseudo-ID, and also detect if no leader is

elected.

The pioneering Itai and Rodeh [56] algorithm, which is probabilistic and non-

uniform, terminates with probability one, and all its terminal states are correct,

meaning that exactly one leader is elected. It operates in O(N) memory and

average-time complexity and has O(N log N) average-case message complexity.
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More recently, a constant space, probabilistic, anonymous algorithm based on

UID-based Franklin’s algorithm was proposed [7].

We would like to stress that in general, randomized algorithms require weak-

ened a definition of the distributed problem to embrace uncertainty about the ex-

ecution time or accuracy of a solution. For instance, the Itai-Rodeh algorithm is

always accurate, however, hypothetically it may run forever.

2.1.4 Self-Stabilizing Protocols

The notion of self-stabilization was originally introduced by Dijkstra in 1974 and

has quite an interesting story. As defined in Definition 2.1.9 self-stabilizing algo-

rithms eventually achieve a legitimate state in a finite number of steps regardless

of initial configuration. In other words, the system does not presume any specific

initial configuration. The system can recover from deviations or failures and re-

turn to the desired global state. A specific IC required by non-stabilizing protocols

is often unrealistic in real life scenarios, since addition or removal of a proces-

sor in a network would require a reset of all processors to a defined initial state.

This means that the system would have to be temporarily stopped and restarted.

Currently, design of self-stabilizing algorithms is very popular but notoriously

difficult. Self-stabilization embraced terms of fault tolerance and reliability and,

beyond a doubt, proved to be a beneficial attribute of distributed systems. It can

resolve several types of failures, such as inconsistent initialization, memory crash,

and transmission errors.

Dijkstra coined the term self-stabilization in conjunction with the token cir-

culation problem on a bidirectional ring. While speculating on the existence of
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self-stabilizing algorithm, he realized the first barrier, which is a direct implica-

tion of Angluin’s theorem.

Theorem 2.1.2. (Non trivial) deterministic, anonymous self-stabilization is not

possible.

Remark. This is valid for all distributed algorithms, naturally including the leader

election.

As a matter of fact, Dijkstra had to presume something that would break a

symmetry of his model. He introduced a composite atomicity model with a cen-

tralized daemon, the scheduler, which determines a single processor that makes a

step when several processors are enabled. Even in this model, considering an ad-

versary daemon, symmetry might be maintained for a ring of composite size when

processors of the same modulo class are selected after each other. Therefore, in

order to solve his problem he concluded that processors must be distinguished

(asymmetric), and he assumed the system consists of a single distinguished pro-

cessor and the rest are identical.

Theorem 2.1.3. (Dijkstra [35]) There is no anonymous, uniform n-processor self-

stabilizing ring if n is composite.

Remark: The term uniform here means that all processors are the same in terms

of state space and transition relation (see Remark in Definition 2.1.6), and cannot

be distinguished.

After about 20 years, Burns and Pachl demonstrated that the distinguished

processor is actually not necessary for a ring of prime size.
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Theorem 2.1.4. (Burns, Pachl [16]) Anonymous, self-stabilizing, uniform token

circulation is possible if n is prime.

Burns has also shown that a central daemon (centralized control) is not re-

quired for a self-stabilizing system if the so-called noninterference property is

presumed (more in [15]).

A successful technique for symmetry breaking in self-stabilizing algorithms

is randomization. As mentioned in Section 2.1.3.2, randomized algorithms in

general require a weakened definition of the problem (in this case including self-

stabilization) to incorporate a probabilistic outcome.

2.1.4.1 Self-Stabilizing Leader-Electing Protocols

The first deterministic leader-electing protocol on bidirectional prime-size rings

was presented by Itkins, Lin and Simon [57]. It uses just constant space per pro-

cessor, however, all possible values of its 9 variables form 6272 different states,

time complexity is O(N2). In addition, the model requires a central daemon that

every step enables a processor. In [13] a lower bound of N states per proces-

sor for any deterministic or randomized, self-stabilizing, unidirectional ring for

leader election was proved. Fish and Johnen [39] presented a space-optimal, de-

terministic algorithm with a central daemon for prime-sized unidirectional rings

with O(N) space and O(N3) time complexity. Fischer and Jiang’s approach [40]

leveraged so-called eventual leader detector ?, an oracle that eventually detects

the presence or absence of a leader. There also exist various UID-based, deter-

ministic, self-stabilizing leader-electing protocols that are basically very similar

to those discussed in section 2.1.2.
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Higham and Myers [50] developed a randomized, self-stabilizing, non-uniform

algorithm solving token circulation and leader election on anonymous, synchronous,

and unidirectional rings of arbitrary size. Awerbuch and Ostrovsky [5] presented

a randomized protocol requiring just lg∗ N states and O(N log N) time on bidi-

rectional rings. Furthermore, the leader election problem on anonymous ring has

been shown equivalent (transformable) to round-robin token management [72].

2.1.5 Our Distributed Model

We use the model of cellular automata, which is anonymous, deterministic, uni-

form, synchronous, self-stabilizing and shared-memory-based. It operates in lin-

ear time O(N) and uses constant (binary state) memory on bidirectional rings or

two-dimensional toroids. We would like to emphasize three crucial aspects of

our CA model with relation to the distributed algorithms presented in previous

sections.

First of all, our CA model tackles one of the fully symmetric instances of the

problem that are principally insolvable. Second, because of this limitation, CAs

could not reach 100% performance and the self-stabilizing property could not hold

for all configurations. Still, it is one of the most fundamental instances of leader

election. Third, each processor operates with minimal possible memory—just a

binary state—and compared to other distributed models mentioned in previous

sections do not require any additional prerequisites, such as a centralized demon,

oracle, randomization etc. A detail comparison of our CA model with distributed

algorithms is provided in Chapter 5.
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2.2. BIOLOGICAL BACKGROUND

2.2 Biological Background

Leader election has an important role for global coordination, decision making

and spatial orientation of a variety of social and biological systems. Animal

groups have to collectively decide about communal movements, activities, nesting

sites and cooperative hunting, that crucially affect their survival and reproduction

[24].

Sociobiology distinguishes two decision making procedures—shared consen-

sus, in which the group does what the majority or defined threshold number (quo-

rum) of its members vote for, and unshared consensus also referred to despotic

decision, in which one individual (leader) makes the decision that the rest of the

group follows. For example, penguins Columbia livia decide mostly by shared

consensus, however, in certain situations experienced birds contribute more to the

decision [25]. Despotic decision of one individual can be found in the popula-

tion of bottlenose dolphins where behavioral signals of one individual precipitate

shifts in the behavior of the entire group [69]. A consensus decision in the group

of Macaca tonkeana involves nearly all group members. On the other hand, just a

few dominant and old individuals take a prominent role in populations of Macaca

mulatta [90]. Biologically-inspired computational models of cell differentiation

elect a leader by combining local inhibition and competition [76]. Within a ho-

mogeneous region, some cells have to be elected to take on special roles, such

as in the development of a wing during morphogenesis of a fruit fly Drosophila

(Figure 2.2) [66]. Evolution of leader election in the system of self-replicating

digital organisms (AVIDA) is described in [59].

From the functional point of view, shared consensus is more balanced and
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Figure 2.2: Morphogenesis of fruit fly Drosophila as an example of leader election (sym-
metry breaking) in nature [66].

less error-prone than despotic decision, even though the group stability is paid

for in higher time consumption. On the other hand, despotic decision is prompt,

which is beneficial especially in danger and prevents any kind of unproductive

stalemates in society. A despotic decision inherently involves a higher risk and

extremal tendencies, due to absolute disregard of opinions of the rest of group.

An interesting analogy can be found in the political organization of ancient Rome.

In the time of peace two consuls together with senate ruled the country and made

decisions, whereas single (elected) individual, dictator, was in command of the

whole empire for the period of six months during a war.

In animal societies, a leader is usually elected or determined by attributes such

as age, knowledge and/or dominance; however, variable leadership with no cor-

relation to dominance has been observed in bird and mammal species [61]. From
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the perspective of distributed algorithms, a biological leader election based on at-

tribute comparison (where the individual with ”highest score” becomes a leader) is

an instance of the extrema-finding problem, whereas variable leadership is anony-

mous or probabilistic. The leader election problem is also referred to as a queen

bee problem that underlines its biological plausibility.

The leader election is widely used, but what processes hidden behind the scene

are responsible for that? Let us make a fundamental abstraction and consider

a fully uniform society with anonymous agents without any memory. Would it

be possible to elect a leader in such a case? In this work we demonstrate that

the model required for leader election does not have to be complicated at all,

and no comparable attributes of individuals, such as, size and age, are needed.

In particular, we present the minimal biologically-inspired distributed system of

cellular automaton with the aspiration to explain or at least give some insights to

leader election at the elementary levels of cells and societies, both biological and

artificial.
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Things don’t change. You
change your way of looking,
that’s all.

Carlos Castaneda
(1931-1998) 3

Cellular Automaton

A cellular automaton (CA) is a distributed system with spatial topology where

each processor (cell) is locally connected to its neighbors. As one of the struc-

turally simplest distributed systems, the CA model is fundamental for studying

complexity in its purest form [95, 28]. CAs have been successfully used in numer-

ous research fields and applications, such as modeling artificial life [62], physical

equations [42, 93], social and biological simulations [38], etc.

3.1 Definition

A CA [23] consists of a lattice of N components, called cells, with cycled bound-

aries (toroid topology) and a state set, Σ. A state of the cell with index i is denoted

si ∈ Σ, where k = |Σ|. A configuration is then a sequence of cell states:

s = (s0, s1, . . . , sN−1).
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Given topology and the number of neighbors n, a neighborhood function η : N→

Σn defines the set of cells whose state is accessible (visible) to cell i. Note that

usually each cell is its own neighbor.

The transition rule φ : Σn → Σ is applied in parallel to each cell’s neighbor-

hood resulting in the synchronous update of all of the cells’ states st+1
i = φ(ηt

i).

The update repeats over time starting from an initial configuration (IC), usually

generated at random. The transition rule is represented either by a transition table,

also called a look-up table, or a finite state transducer [53]. In this thesis we fo-

cus exclusively on uniform binary CAs, where all cells share the same transition

function and each cell can be in one of two possible states.

The global transition rule Φ : ΣN → ΣN is defined as the transition rule with

scope over the configurations

st+1 = Φ(st)

Because CAs are deterministic, their state evolution is fully determined by the

initial configuration and the global transition rule governing the cell updates. For

all possible configurations Ω = ΣN of N cells, an ensemble operator Φ : 2Ω → 2Ω

is defined as a function mapping a set of possible lattice configurations Ωt at time

t to another set of configurations Ωt+1 at the next time step t + 1.

A CA’s configuration st can be seen as a finite string, or word, over the alphabet

Σ, and a set of configurations Ωt as a regular language [49]. Therefore, Φ, which

maps a regular language Ωt to another regular language Ωt+1, is in fact a finite

state transducer and CA a regular language processor.

In this thesis we deal with two CA topologies: one-dimensional (ring) and

two-dimensional (toroid), discussed in Section 3.1.1 and 3.1.2 respectively.
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3.1.1 One-Dimensional CA

The neighborhood function η : N → Σn for a one-dimensional CA is defined by

radius r (n = 2r + 1) as

ηi = (si−r, . . . , si, . . . , si+r)

A one-dimensional CA with k states and radius r is often denoted as a (k, r)-CA.

An elementary cellular automaton (ECA) is a specific kind of one-dimensional

CA, where (k, r) = (2, 1). Since the transition table of an ECA has 23 = 8 rows

there are 28 = 256 possible ECAs. An ECA is encoded by the decimal repre-

sentation of the binary transition table’s outputs ordered from the highest to the

lowest neighborhood configurations. For instance, ECA 110’s table outputs are

0, 1, 1, 0, 1, 1, 1, 0, which correspond to 8 possible neighborhood configurations

going from 1, 1, 1 to 0, 0, 0. Figure 3.1 shows the update mechanism of a one-

dimensional binary CA exemplified on ECA 110.

Dynamics of a one-dimensional CA are often illustrated by using a space-time

diagram (Figure 3.2), where the lattice of cells is displayed horizontally with an

active cell marked as black (state 1) and an inactive cell as white (state 0). Time

goes vertically from the top to the bottom.

3.1.2 Two-Dimensional CA

The neighborhood function of a two-dimensional CA is defined by radius r, how-

ever, unlike the one-dimensional case, the shape of neighborhood could vary de-

pending on chosen metrics or distance formula. The most commonly used is a
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3.1. DEFINITION

Figure 3.1: Schematic of the configuration update for a binary one-dimensional cellular
automaton. The transition table represents ECA 110.

square neighborhood, where distance is defined as maximum of coordinate differ-

ences in each direction, thus, neighborhood has a square shape of length 2r + 1

containing (2r + 1)2 cells. The so-called Moore neighborhood is a square neigh-

borhood with radius r = 1 containing 9 cells. The square neighborhood function

η : N → Σn is therefore defined as

ηi, j = (si−r, j−r, . . . , si+r, j−r, . . . , si−r, j, . . . , si+r, j, . . . , si−r, j+r, . . . , si+r, j+r)

Similarly to the one-dimensional case, two-dimensional CA’s boundaries are

cyclic, i.e., we treat them as tori. Figure 3.3 shows the update mechanism for a

two-dimensional binary CA with a Moore neighborhood.

The dynamics of two-dimensional CAs are illustrated as a series of configura-
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Figure 3.2: An example space-time diagram of ECA 110 starting at random initial con-
figuration. ECA 110 exhibits complex dynamics at the edge between stability and chaos.

tion snapshots, where again an active cell is black and inactive cell white (Figure

3.4).

3.2 Overview and Applications

John von Neumman [77] introduced the concept of a cellular automaton (CA) to

explore the logical requirements for machine self-replication and information pro-

cessing in nature. Despite having no central control and limited communication

among components, CAs are capable of universal computation, i.e., are Turing-

machine equivalent, and can exhibit various dynamical regimes.

One of the most famous cellular automata is the Game of Life [44], a two-

dimensional CA with Moore neighborhood, introduced by Conway in 70’s. The
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Figure 3.3: Schematic of the configuration update for a binary two-dimensional cellular
automaton, namely Woltz and deOliveira’s CA performing density classification.

Game of Life CA has shown universal computability. Its dynamics are capable of

generating several dozen spatial-temporal propagating patters, such as so-called

gliders and spaceships. It was used to study emergent behavior, complexity, and

to some extent biological features. The Game of Life transition rule is defined

as follows—a cell becomes active if it is surrounded by exactly three active cells
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(a) t0 (b) t25 (c) t50

(d) t75 (e) t100 (f) t125

Figure 3.4: Example of space-time diagrams of 2D CA. Figures show CA at 6 stages
starting from a random initial configuration at time t0 reaching a final configuration with
all inactive cells at time t125. The transition table represents Wolz-deOliveira’s CA [98]
for the density classification task.

(reproduction); an active cell stays active if it neighbors two or three active cells

(life), and turns inactive otherwise (death). It means that cells die if they are too

densely or too loosely-coupled.

Smith [88] showed that one-dimensional CAs are computationally univer-

sal. Toffoli and Fredkin [42, 92] employed CAs to model physics, namely the

equations of heat and waves, and the Navier-Stoke equation. Their CA compu-

tational model assumed reversibility and information storing (fundamental laws

of particles physics). Wolfram [96, 97] systematically explored dynamics of

one-dimensional CAs, especially ECAs. He identified four qualitative classes of
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CA behavior, which apply to all dynamical systems—fixed points, limit cycles,

chaotic and complex dynamics. Vichniac and Bennett [42, 93, 14] demonstrated

that CAs are ideal, sufficiently simple candidates for studying various emergent

properties of dynamical systems, such as turbulence, chaos, symmetry break-

ing, and fractality. Vichniac [94] also investigated one-dimensional nonuniform

CAs that chose probabilistically one of two rules each step. He showed that this

nonuniform model creates different complex structures. Langton [63] postulated

self-reproducing CA, so-called Q-loops or SR-loops. He also coined the term

”edge of chaos”, a special narrow complex regime, promoting information trans-

fer and processing. Langton classified CA dynamics [62] by λ parameter, den-

sity of ones in the transition table. Garzon [45] presented two generalizations

of CA—discrete neuron networks and automota networks. Ermentrout [38] used

CA to model various biological phenomena. CAs are also relevant for new com-

puter distributed architectures. Thousands or millions of processors organized

into regular lattice could in fact harness several key CA properties [100]. Other

applications include market simulation (voting model), design and simulation of

new biomolecules, and simulation of reversible logic in quantum computational

models [47]. Solving computational tasks by evolutionary optimization of CA

transition tables is discussed separately in Section 4.2.

3.3 CA Computation

CA computation is a product of local interactions of cells, which share the same

transition rule. Designing cellular automata to perform a task that requires global

coordination of cells is notoriously difficult. Because of massive parallelism, it
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is often nontrivial to predict the behavior of a CA from its transition rule. For

instance, the density (or majority) classification task is to decide whether the initial

configuration contains more ones or zeros. If there are more ones in the IC, a final

configuration is expected to be a homogeneous configuration of all ones, otherwise

all zeros. This task is very easy for an architecture with central processing, which

could straightforwardly calculate the ratio of ones in a configuration by a simple

iteration through all cells. This task is, however, quite difficult for CA. All greedy

approaches such as the local voting or region expanding do not sufficiently work.

In fact because this task requires a global information exchange it is often used a

CA benchmark task [28, 20].

Another issue with CA computation is the interpretation of CA dynamics.

Even if we find a CA that handles a given task, such as, density classification, we

often cannot properly describe how it solved the task. Most common approaches

rely on statistical information-theoretical measures of CA dynamics, e.g., entropy

[99], mutual information, and perturbation stability [67]. Note that these measures

are often used for random Boolean networks [58], which are generalized CAs with

non-spatial (non-uniform) topology and non-uniform transition tables. Based on

these properties CA dynamics could be categorized in one of the four dynamical

regimes, known also as Wolfram’s classes. Wolfram’s classes are stable point,

limited cycle, complex and chaotic behavior.

The statistical analysis and categorization of CA’s dynamical regime is bene-

ficial, but not detailed enough. In the next section we provide an alternative, more

narrative description of CA dynamics using the theory of computational mechan-

ics.
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3.4 Computational Mechanics

Since CAs are completely discrete, it was quite difficult to analyze their behav-

iors with instruments known from the theory of conventional dynamical systems.

The methodology of computational mechanics [27, 48] finally bridged this gap by

synthesising the concepts from both computational and dynamical system theo-

ries. The global, collective dynamics of CA can be, therefore, understood and de-

scribed in terms of space-time structures: domains, which form the regular back-

ground of computation, particles acting as carriers of information, and particle

interactions, which perform the CA’s information processing.

3.4.1 Regular Domain

A regular domain is a homogeneous space-time region containing the same set

of (sub)configurations that appear invariantly over and over again, both in time

and in space. A regular domain forms a regular, ”nicely shaped” region—it is a

spatio-temporal region in which ”things are basically the same” [48].

Formally, a regular domain Λ j is a process language consisting of a set of

spatial configurations with following two properties:

1. Temporal invariance - CA dynamics represented by Φ, maps Λ j to itself,

i.e. Φp(Λ j) = Λ j (minimal p defines temporal periodicity of domain). Al-

ternatively, CA map a configuration in Λ j to another configuration in Λ j,

i.e. Φ(s) = s′ and s, s′ ∈ Λ j.

2. Spatial homogeneity - Λ j is spatial translation invariant, i.e. it is position

independent and can occur at any site. Thus the process language of a Λ j is
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strongly connected.

Regular domains can be discovered either by a visual inspection of space-

time diagrams or a method called ε-machine reconstruction [30, 26, 48]. The ε-

machine reconstruction automatically identifies deterministic finite state automata

(DFAs) as candidates for regular domains. After finding potential regular do-

mains, one must verify whether the candidate domains satisfy the given two con-

ditions. The FME algorithm [48] could be used for validation of temporal invari-

ance. For spatial homogeneity, we need to verify whether any pair of states is

path-accessible by a simple exploration of the DFA process graph. Each regular

domain Λ j has a temporal and a spatial periodicity. As mentioned in the defini-

tion of temporal invariance, the temporal periodicity of a domain Λ j is the smallest

value p for which Φp(Λ j) = Λ j. A domain Λ j then cycles through its phases pt
Λ j

Figure 3.5: Regular domains of ECA 55: (left) a two-phase domain Λ0 and (right) a
one-phase domain Λ1.

31



3.4. COMPUTATIONAL MECHANICS

in a fixed order (numbered 1, . . . , pt
Λ j). There is a corresponding regular expres-

sion (and minimal DFA) for each one of these phases. The spatial periodicity ps
Λ j

of a domain Λ j is the number of cells in the CA lattice after which each tempo-

ral phase of the domain repeats itself. Expressed in other words, it is equal to

the number of states of associated minimal DFAs. The spatial periodicities of all

temporal phases of a domain Λ j are equal.

For instance ECA 55 has two regular domains Λ0
55 = {0∗, 1∗} and Λ1

55 =

{(000∗111∗)∗}. The temporal periodicity pt reflecting the number of domain phases

is 2 for Λ0
55 and 1 for Λ1

55. Spatial periodicity is determined by the number of states

of each phase DFA, therefore ps
Λ0

55
= 1 and ps

Λ1
55

= 4 (Figure 3.5).

For given domains Λ = {Λ0,Λ1, . . . } with associated DFAs MΛ0 ,MΛ1 , . . . a

so-called domain filter or domain transducer filters all lattice configurations that

belong to some domain as illustrated in Figure 3.6. For construction details see ,

e.g., [27].

3.4.2 Particle

A filtered space-time diagram reveals space-time structures that are not part of

domains but are regular propagating objects formed at a boundary between do-

mains. These structures, called particles, encode and transfer information among

distinct regions, and therefore enable global communication. As described by

Mitchell [75], particles are similar to signals that are created and propagated by

local interactions among cells.

Formally, a particle, usually marked by a Greek letter, is a spatially localized

and temporally periodic structure at the boundary of two domains with limited
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Figure 3.6: A domain filter construction and an example of space-time-diagram filtration
(partially reproduced from [48].

width (Figure 3.7). As opposed to a domain, a particle is bounded in space, thus,

it does not have a spatial periodicity. The temporal periodicity of a particle α

is denoted as pα and set of particles as P = {α, β, . . . }. The displacement dα of

a particle α is defined as the number of cells that particle is shifted during one

period (the left displacement is negative, the right one is positive). Velocity vα

is then vα = dα/pα. Note that the term ”particle” was coined to emphasize the

analogy with physical particles, which are however much more complicated.

3.4.3 Particle Interaction

Since the particle velocities often vary, their trajectories are not collinear and they

can collide. A particle interaction processes information encoded in colliding

particles and represents a high-level form of decision making.

For instance, a particle interaction denoted as α+β→ γ (Figure 3.7) represents
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(a) (b)

Figure 3.7: (a) Space-time diagram and (b) filtered version with particle identification
[28].

a collision of particles α and β that creates a new particle γ. Besides the production

of new particle(s), the possible result of interaction is an annihilation of colliding

particles (result ∅), in which domains separated by particles merge into one.

The result of particle interaction is determined by the phase of the colliding

particles. If a particle collision is phase-dependent, all possible results are written

at the right side of the interaction, e.g., α + β → γ | β + ω. The set I is a set

containing all possible interactions of a given CA.

3.4.4 Particle Catalog

The particle catalog contains all domains, particles and particle interactions {Λ,P, I}.

It provides a descriptive tool to understand the processes underlying CA dynam-

ics. It is a relevant abstraction of CA computation capable of predicting CA be-

havior without having to run the CA itself.

The quote stated in the title of this chapter applies very much to the particle-
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based description of CA dynamics. The same space-state diagram looks different,

if we use the optics of particles transferring and processing information.

Domains and particles usually cannot be identified from the very beginning

of a CA computation. The condensation time tC defines the first moment, when

there are only domains and particles present in a space-time diagram and all pre-

condensational fluctuations disappeared. The pre-condensational phase is not rel-

evant for the whole dynamics of CA and thus can be omitted. Computational

mechanics also omits the size of the particle (zero size), interaction time (appears

instantly), etc.
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The theory of evolution by
cumulative natural selection
is the only theory we know
of that is in principle capable
of explaining the existence of
organized complexity.

Richard Dawkins (1961- ) 4
Cellular Automata Evolution

In this chapter we introduce genetic algorithms and briefly present the selected

work on evolutionary CA optimization for several computational tasks.

4.1 Introduction to Genetic Algorithms

Genetic algorithm (GA) [73] was originally introduced by Holland [52] as a stochas-

tic optimization tool inspired by the Darwinian evolution. GA is an iterative pro-

cess that intelligently searches through a space of possible solutions. GAs are pop-

ular and widely applied for many scientific or technological problems [46, 6, 2, 4].

GA operates on a population of chromosomes, which encode possible solu-

tions for a given problem and are represented by vectors. Initial population is

usually generated at random or using a heuristic. Every generation (evolutionary

step) GA calculates the fitness of each chromosome, which reflects how well the

chromosome solves a given problem. For instance, the fitness could be a fraction

of correctly classified instances to the number of trials.
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The best chromosomes in terms of fitness act as parents of new individuals in

the next generation. Chromosomes can be selected to reproduce either by elite or

roulette method. The elite method selects deterministically the certain number of

fittest chromosomes. The roulette method selects chromosome with probability

proportional to their fitness. In the roulette method selection probability could be

adjusted by fitness renormalization.

Reproduction can be sexual or asexual. In the former case, crossover between

two selected parent chromosomes can be either one-point (i.e., in chromosomes

of length n, the child’s first p ≤ n genes are from one parent and the last n − p are

from the other), or a probabilistic shuffle. Also, crossover could be conditional,

hence it occurs with a probability pcross ≤ 1, otherwise new off-springs are exact

copies of their parents.

The operation of mutation alters certain bits in newly created chromosomes.

The bit alternation can be produced either by a full replacement with a newly

generated bit, or for Integer or Real numbers a new bit can be generated by a

perturbation. The number of bits the mutation changes depends on a mutation

type: one-bit, two-bit, exchange and per-bit. Similarly to crossover the mutation

could be conditional.

As presented in Figure 4.1 an evolutionary cycle consists of fitness calculation,

selection, crossover and mutation, and it repeats until the stop-criterion, such as,

the target (maximum) fitness, or alternatively a fixed (maximal) number of gener-

ations is reached. For more information about GA and evolutionary dynamics we

advise the reader to refer to the many excellent textbooks that already cover these

areas, e.g., [73, 29].
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Figure 4.1: Genetic algorithm as a cyclic process.

4.2 Related Work

The idea of applying evolutionary optimization to CAs is not new. Several models

and techniques have been proposed. Koza [60] applied genetic programming on

CAs to generate simple random numbers. Sipper evolved non-uniform CAs for

the iterated prisoner’s dilemma and other problems [87]. Note that nonuniform

CAs where each cell has a different transition rule make solving a computational

task easier, however, the search space is much larger.

In his pioneering work Packard [79, 82] employed genetic algorithms to evolve

uniform CAs to perform the density classification task. Note that the population

of chromosomes, which encode candidate CAs as bit vectors, consists of the tran-

sition (look-up) tables’ outputs using the standard ordering. In the density classifi-

cation task a final configuration is expected to consist of all ones if the initial con-
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figuration contains more ones, all zeros otherwise. Since Packard, density classi-

fication has been widely used as a benchmark task for one- and two-dimensional

CAs.

Ganguly and colleagues [43] modelled an associative memory (pattern recog-

nition) by so-called generalized multiple attractor cellular automata. They have

developed constrained genetic algorithms, with the help of which the evolution-

ary process can be guided through a special class of additive or linear CA.

The largest contribution to the field of evolutionary cellular automata is, be-

yond a doubt, due to the former EvCA [54] (Evolutionary Cellular Automata) and

CM (Computational Mechanics) groups at Santa Fe Institute led by M. Mitchell

and J. Crutchfield. The EvCA and CM groups evolved one-dimensional binary

CAs to perform the density classification [74, 31, 28] and synchronization [32, 53]

tasks.

More recently, a two-dimensional variant of the density classification has been

successfully tackled by several authors [21, 81, 71]. Other tasks for two-dimensional

CAs include synchronization, spatial density niching, and rectangle image bound-

ing [20].
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An organized product of na-
ture is that in which all the
parts are mutually ends and
means.

Immanuel Kant (1724-1804) 5
Leader Election in Cellular Automata

Starting in this chapter, we present our original contributions. Here we describe a

GA optimization technique employed to search the space of possible CA transition

tables, and the solutions found for the leader election problem in one- and two-

dimensional binary cellular automata. Further, we discuss the performance results

of our solutions, and analyze them with computational mechanics, transition table

density, and perturbation stability.

In Chapter 2 we introduced the leader election problem in the context of dis-

tributed algorithms, showing that the anonymous, deterministic instance we are

about to address is insolvable. We argue that leader election should not expect

the components (cells) to be distinct, because that would require a central entity

(a sequencer) assigning unique IDs, which would break the very essence of dis-

tributed control. Moreover, we opt for the lowest memory usage per processor

(cell) possible—a constant (binary) memory. Non-constant memory distributed

routines would need extra memory each time a new processor is added. Also,
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we aim to incorporate the self-stabilization property. Self-stabilization promotes

robustness to external interference and allows recovery from failures without any

(or minimal) assumption about IC. We suggest that these attributes would greatly

contribute to efficient and robust leader election in both artificial and natural dis-

tributed protocols.

It is surprising that the anonymous, deterministic, self-stabilizing, uniform

leader election which we are about to investigate has not been addressed in dis-

tributed algorithms nor multi-agent systems research. Even though, as a result

of Angluin’s theorem, this instance of the problem is not solvable to an accuracy

of 100%, we decided to explore leader election in its simplest form. Our CA ar-

chitecture is visibly simpler than the distributed algorithms presented in Section

2.1. All state-of-the-art self-stabilizing distributed models assume additional aids,

such as a daemon or oracle, extra memory, randomization, and more advanced

computational or communication capabilities. Also, our target memory of O(1)

(binary state) and O(N) time complexity is clearly superior to any of known dis-

tributed algorithms.

CAs are massively parallel and spatially extended pattern-forming systems.

Our goal is to use machine learning procedures, such as a GA stochastic search, to

automatically design CAs that harness parallelism and form propagating patterns

that transcend individual cells. Since cells operate just with a binary state—they

cannot store any additional data. Further, cells do not send information through

explicit messages but rather transfer information collectively using recurring state

patterns spreading through several cells. This is the main difference between our

approach and ”classical” distributed algorithms.

We assert that our CA is the simplest resource-efficient model capable of
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leader election. As we mentioned, this instance of the problem is not fully solv-

able. We show that for any CA there exist configurations that prevent successful

leader election as a result of configuration symmetry and loose-coupling of active

cells, discussed in Chapter 6. This situation occurs, however, very sporadically.

We present several successful CAs performing leader election. The best one-

dimensional CA, called the improved strategy of mirror particles, reaches perfor-

mance of 99.7% for uniform and 94.5% for density-uniform distributions. The

success rate of the best two-dimensional CA is 98.7% for uniform and 80% for

density-uniform distributions.

5.1 Leader Election as CA Computational Task

Before we take a closer look at the GA model of CA evolutions we need to for-

mally define a CA computational task [53]. The computational task T expresses

a functional relation between an input, question set Ci ⊆ Ω = ΣN , and the desired

output of CA, Answer set Ai ⊆ Ω:

T : ΣN → ∪iAi

s0 ∈ Ci ⇒ T (s0) ∈ Ai

There always exists an answer, i.e., configuration(s) of one particular answer

set Ai, for a question (IC) from Ci (Ci ∩ C j = ∅, i , j and ∪n
i=1Ci = Ω). Thus, a

computational task is the set of question-answer pairs. If an answer set contains

more than one configuration, sometimes it is required that the CA must cycle

through all of them.
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Now we define the leader election computational task T reflecting the rela-

tionship between an input (IC) and desired output (final configuration(s)) as

T : ΣN → {s ∈ ΣN |#1s = 1,Φ(s) = s}
�
 �	5.1

The function #1 denotes the number of ones in a configuration (word). The

goal is to transform each IC to a fixed point configuration containing exactly one

cell in the state 1 and the rest in the state 0.

The leader election task T , as just formulated, differs slightly from the gen-

eral definition of a computational task. Specifically, a CA is not required to cycle

through all configurations in the answer set (configurations with exactly one active

cells), but it is supposed to settle down to one of the legal stable-point configura-

tions.

5.2 Model of Cellular Automata Evolution

To search the space of possible CAs for leader election for both, one- and two-

dimensional configurations, we employed a standard GA [52, 73] introduced in

Section 4.1, inspired by Darwin’s classical theory of natural selection.

Each chromosome represents a transition function φ shared globally by all

cells. More specifically, a chromosome is a linear vector of length |Σ|n consisting

of the output bits of a transition table, where Σ is the state set and n is the number

of cells in a neighborhood. Since we deal exclusively with binary CA, |Σ| = 2 and

a transition table (chromosome) consists of 2n rows. The size of the chromosome

space in which the GA searches is, therefore, 22n
. Since one or two-dimensional

topology as well neighborhood size (shape) is implied we will use the terms CA,

43



5.2. MODEL OF CELLULAR AUTOMATA EVOLUTION

transition table or function, and chromosome interchangeably.

Now we present the common GA settings for both one- and two-dimensional

instances. The specifics will be discussed separately in Sections 5.3 and 5.4. The

GA uses an elite selection, hence we choose the E fittest chromosomes in each

generation and copy them directly to the next without any change. The remaining

M−E chromosomes, where M is population size, are discarded. M−E offsprings

are then generated by crossover of randomly chosen elitist chromosomes. The

crossover is one-point and not conditional. All M−E chromosomes are subject to

mutation with probability pmut. If mutation occurs, each bit is flipped with proba-

bility pm, so the average number of inverted bits is k2r+1 pm. Fitness renormaliza-

tion is absent, since chromosomes are selected solely according to their rank, not

a numerical value of their fitness. The stop criterion is the maximal number of

generations G.

5.2.1 Fitness and Performance

By PI
N(φ) we denote the performance of CA with transition rule φ and lattice size

N on the leader election problem. Performance is calculated as the fraction of

correctly computed ICs to the total number of randomly drawn test ICs I. Fol-

lowing Definition (Equation) 5.1 we assign the tested CA a point only if its final

configuration is a fixed point with exactly one active cell. Additionally, we im-

pose a maximal time (the number of steps) tMAX allowed for CA computation.

Thus, if a CA does not reach a correct answer within tMAX steps, the output is

considered incorrect. Due to the huge number of possible configurations 2N , per-

formance PI
N(φ) with transition rule φ and lattice size N reflects only a reasonable
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number of randomly generated ICs I. Therefore, the calculated performance is an

approximation of ”real performance”. Fitness F I
N(φ) is defined the same way as

performance but usually for a smaller number of test ICs to balance the execution

time and accuracy.

To generate test ICs and chromosomes in the initial population we use two

standard probability distributions: uniform and density-uniform. Uniform distri-

bution chooses each bit independently with equal probability for all states from

Σ. On the other hand, in density-uniform distribution each density, the fraction

of ones in generated strings has uniform probability. This means that density is

uniform over λ ∈ 〈0, 1〉 or over ρ ∈ 〈0, 1〉, where λ is the fraction of ones in φ’s

output bits and ρ is the fraction of ones in the IC.

5.3 Leader Election in One-Dimensional Cellular

Automata

Let us recall that the transition table φ of a one-dimensional binary CA with ra-

dius r consists of 22r+1 rows. As stated in Section 5.2, each chromosome rep-

resents a transition table shared globally by all cells. To generate initial chro-

mosomes as well as test ICs we use density-uniform distributions. To impose a

linear execution time we allow tMAX = 2N steps for CA computation. We cal-

culated fitness F I1
N (φ) for the training number of cells N = 149 and I1 = 100

ICs. We generated the test ICs with density-uniform distribution, because, as we

will show later, this distribution type prefers ICs with lower densities, which are

generally more difficult. After each evolution we determined performance PI2
N (φ)

of selected chromosomes more accurately for both density-uniform and uniform
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distributions, N ∈ {149, 599, 999} and I2 = 104.

The GA settings employed for one-dimensional leader election are as follows:

population size M = 100, number of test ICs I = 100, number of elite chromo-

somes E = 20, crossover probability pcross = 1, mutation probability pmut = 1,

per-bit mutation probability pm = 0.0016, and maximum generation G = 100.

Initially we aimed to find CA for the leader election task with the minimal

radius. Since there are just 256 CAs for radius r = 1 we could directly calculate

their performance without a help of GA. Not surprisingly the results were just

marginal. The CA evolutions with r = 2 resulted in a noticeably higher perfor-

mance reaching maximum of 0.586, however, the performance is not very stable

and decreases rapidly with respect to N.

In following sections we present the results of evolutions, various one-dimensional

strategies, their performance, and computational mechanics and transition table

density analysis.

5.3.1 Results of Evolving Cellular Automata

The minimal radius that allows CA to solve the leader election task with satisfac-

tory results is r = 3. Interestingly, EvCA group, which performed CA evolutions

for the density classification and synchronization tasks came to the same conclu-

sion, thus we could speculate that radius r = 3 could be a general threshold for

a complex computation. Note that the size of the chromosome space in which

the GA searches is 2128, far too large for exhaustive enumeration and performance

evaluation.

We performed two sets of evolutionary runs. The first set with 98 evolutions
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used randomly generated initial populations, the second one containing 104 evo-

lutions started with the identical initial population consisting of several mutated

copies of the first chromosome from the first evolutionary set that reached fitness

> 0.9.

The first evolutionary set targeted an exploration of the fitness landscape and

identification of underlying evolutionary strategies. Only 20% of evolutions reached

particle-based strategies, identified by fitness > 0.8, and just a small fraction (7%)

reached a high-performing region of > 0.9. Leader election strategies had to

overcome the major issues of CA architecture, the local scope of individual cells

r << N and the lack of memory. The GAs pushed the transition tables towards ef-

ficient and reliable ways of global information exchange between distinct regions.

The evolutionary dynamics of leader election is not smooth and shows some very

dramatic leaps, or innovations. A sudden jump from the fitness 0.4 to 0.8 is the

most crucial innovation from the computational perspective, since it separates lo-

calistic from global particle-based strategies.

The second evolutionary set aimed to find the best-performing CA for leader

election. The most successful strategy of mirror particles reached a performance

of 0.944 for density-uniform and 0.992 for uniform distribution and N = 149. We

further improved these results in additional evolutions that started with an initial

population consisting of randomly perturbed chromosomes which use the strategy

of mirror particles.
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5.3.2 Analysis

The evolutionary search uncovered various strategies which we further examined

and analyzed. They can be roughly categorized according to their characteris-

tic computational aspects into 5 representative types: the strategy of mandatory

function, density reduction, the divide and eliminate strategy, the first particle-

based strategy, and the (improved) strategy of mirror particles. This categorization

grasps the most prevalent computational approaches, but many strategies (transi-

tion functions) that occurred during evolutions defy this high-level characteriza-

tion and are often border-line.

The first three strategies are localistic and often exploit the statistical prop-

erties of generated ICs, such as mean and variance. There is no long-distance

information exchange, so a leader is elected only on short subsequences of cells.

That results in a sharp decrease of performance with respect to N. The last two

strategies leverage a particle collision-based model of the computational mechan-

ics, allowing a coordination of cells at the global scale.

(a) (b)

Figure 5.1: The strategy of mandatory transition function - space-time diagrams of (a)
successful and (b) unsuccessful leader election.
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5.3.2.1 Strategy of Mandatory Function

Each transition rule with non-zero chance to solve the leader election problem

must include 2r + 2 mandatory transitions (see Section 6.2.1) securing the final

leader configuration to be a stable point (e.g., φ(0001000) = 1 and φ(1000000) =

0). It is not surprising that the first strategy with a non-zero fitness implements

mandatory transitions by setting 2r + 2 bits in the chromosome. Naturally, this

strategy is usable only on ICs with exactly one active cell (respectively on a few

more cases). Performance (Figure 5.1) roughly approaches the probability that IC

generated as either density-uniform or uniform has exactly one active cell.

N Uniform Density-Uniform

149 0.002 0.018
599 0.000 0.003
999 0.000 0.002

Table 5.1: Performance of the strategy of mandatory transition function using uniform
and density-uniform distributions.

5.3.2.2 Density Reduction

The density reduction strategy with fitness 0.2 is a greedy and localistic strategy

that produces a leader by reducing the number of active cells (density) to mini-

mum. This naive approach would correspond to a transition rule designed by hand,

rather than any automatized optimization technique. All bits in the chromosome,

that encode this transition table, contain zeros at the position of almost all bits

(except φ(0001000) and φ(1111111)), i.e., the transition table density λ ≈ 0. Cor-

rectness of this approach is determined by the number of occurrences of exactly
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one string 0001000 or continuous parts of 1s with suitable length for shrinking.

The density reduction strategy (Figure 5.2) performs significantly better on higher

densities of 0.45 − 0.99. Lower densities lead to higher frequencies of more than

one 0001000 string, thus, more than one active cell in a stable point configura-

tion. Since density-uniform distributions prefer ICs with lower densities, which

are generally difficult to solve, performance for uniform distribution of ICs (with

density clustered around 0.5) is higher.

(a) (b)

Figure 5.2: The density reduction strategy - space-time diagrams of (a) successful and (b)
unsuccessful leader election.

N Uniform Density-Uniform

149 0.330 0.214
599 0.020 0.024
999 0.001 0.008

Table 5.2: Performance of the density reduction strategy using uniform and density-
uniform distributions.
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5.3.2.3 Divide and Eliminate

The divide and eliminate strategy (Figure 5.3) is the last localistic and non-particle

strategy in the evolutionary process. The core mechanism of this strategy con-

sists of two operations, we call them division and elimination. The division op-

eration splits the continuous regions of active or inactive cells into configuration

sequences (10)+1 and (100)+1 where the distance between active cells is 2 or 3 re-

spectively. Consequently, the elimination operates on these continuous sequences

and reduces them from one or both sides. There is a sign of emerging domains

and particles, however, this strategy still cannot be considered particle-based. The

division and elimination processes run simultaneously producing non-trivial dy-

namics. Fitness of this strategy is about 0.4, performance is 0.32 for density-

uniform and 0.38 for uniform distribution (Figure 5.3).

Since this strategy is still localistic it lacks global information exchange, and

so it tackles the leader election problem only on limited subsequences of cells.

Hence, performance decreases rapidly with respect to N.

(a) (b)

Figure 5.3: The divide and eliminate strategy - space-time diagrams of (a) successful and
(b) unsuccessful leader election.
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N Uniform Density-Uniform

149 0.383 0.321
599 0.100 0.068
999 0.018 0.011

Table 5.3: Performance of the divide and eliminate strategy using uniform and density-
uniform distributions.

5.3.2.4 First Particle-Based Strategy

At this point of the evolutionary process, a first particle-based strategy was found.

To describe the dynamics of this strategy we use the framework of computational

mechanics. We identified several domains, particles, and their interactions re-

sponsible for leader election (Figure 5.4). Let us recall that regular domains are

homogeneous space-time regions that are temporally invariant, forming a back-

ground for computation (Section 3.4). Particles are propagating objects formed at

a boundary between domains, which transfer information on distances, and finally

particle interactions carry information processing.

From the computational mechanics perspective a leader itself can be consid-

ered as a particle separating two (white) domains Λ0 = 0∗. We denote this particle

ω. The strategy produces a leader ω by an interaction of particles α and β. The

particle with most occurrences in space-time diagrams and a crucial function in a

collision-based computation is β. The particle β is responsible for leader election

by interaction α + β→ ω and sweeping of intermediate particles in configuration

by interactions ω+β→ β, β+γ → δ, and δ+β→ β. Each β interaction generates

either a leader particle ω or β itself. The only exception is an interaction with γ

producing δ, that is, however, eliminated rapidly by interaction δ + β → β. Table
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Domains Λ
Label Regular language

Λ0 0∗

Λ1 (1001000101)∗

Particles P
Label Boundary Velocity
α Λ0Λ1 3
β Λ1Λ0 1
γ Λ0Λ1 −1/3
δ Λ1Λ1 3
ω Λ0Λ0 0

Interactions I
α + β→ ω ω + γ → γ + β + α

ω + β→ β δ + β→ β

β + γ → δ |α + β

Table 5.4: The particle catalog of the first particle-based strategy.

5.4 presents the full particle catalog of this strategy.

The main drawback is the less-than-ideal directions of the particles, since most

of them have positive velocities and the only particle with a negative velocity, γ,

is very slow (its velocity is −1/3). In addition, the particles α and β separated by

a domain Λ1 do not have enough time to move through the whole configuration

before they collide. As a matter of fact, a final configuration as shown in Figure

5.4(b) might end up having more than one leader cell (a particle ω).

Fitness and performance is, compared to any localistic strategies, fairly ac-

ceptable. Fitness reaches values around 0.8 and performance is about 0.725 for

density-uniform and 0.759 for uniform distribution as shown in Table 5.5. Per-

formance decreases very slowly with respect to N, and as opposed to following,

otherwise best-performing, strategies is fairly universal, i.e., it does not show signs

of measurable N-modulo restrictions (discussed in Section 5.3.2.8).
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(a) (b)

Figure 5.4: The first particle-based strategy - space-time diagrams of (a) successful and
(b) unsuccessful leader election.

N Uniform Density-Uniform

149 0.759 0.725
599 0.715 0.680
999 0.677 0.659

Table 5.5: Performance of the first particle-based strategy using uniform and density-
uniform distributions.

5.3.2.5 Strategy of Mirror Particles

The strategy of mirror particles is characterized by the occurrence of pair-like

particles moving with the same speed but in opposite directions. We call these

mirror particles. These include particle pairs α and β, γ and δ, ε and ζ. They all

lie at the border of domain 0∗ and the zig-zag domain (01)∗. Table 5.6 presents
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the full particle catalog of this strategy. As opposed to previous strategies, the

strategy of mirror particles resolved the problem of two or more active cells in a

final configuration by a two-phase sweep consisting of α+β and γ+δ interactions

as shown in Figure 5.4(b). More precisely, the main rule responsible for leader

(particle ω) election is the interaction α + β → γ + δ followed by γ + δ → ω

visible in Figure 5.6(a). A collision of α and β indicates that the final stage of

leader election could start. Particles γ and δ are emitted to verify if there are

any particles left. They turn around the whole configuration with high opposite

velocities. In case they do not collide on their routes, they meet in the middle, and

finally produce a global leader ω.

Domains Λ
Label Regular language

Λ0 0∗

Λ1 (01)∗

Particles P
Label Boundary Velocity
α Λ1Λ0 1
β Λ0Λ1 −1
γ Λ0Λ1 3
δ Λ1Λ0 −3
ε Λ0Λ1 3
ζ Λ1Λ0 −3
ω Λ0Λ0 0

Interactions I
α + β→ γ + δ | ∅(Λ1) α + ω→ α

γ + δ→ ω |α + β β + ω→ β

α + γ → α + β ε→ ε + ω

β + δ→ ω ζ → ζ + α + β

ε + ζ → α + β + ε

Table 5.6: The particle catalog of the strategy of mirror-particles.
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Further particles detected in space-time diagrams are long-periodic particles ε

and ζ. Their unique attribute is a spontaneous emission of particles during each

period. A particle ε generates a leader particle ω, whereas ζ generates mirror

particles α and β. Also, the particles α and β clean ω particles on their routes,

which in case of the interaction α + ω→ α causes the phase shift of α.

The number of particles with positive velocities equals those with negative

ones. All particles are fairly fast. Their absolute velocities range from 1 to 3

excluding a non-moving particle ω. Also, the differences of colliding particles’

velocities are high. That has a positive impact on the overall performance.

Fitness of this evolutionary strategy is 0.99; performance reaches 0.944 and

0.992 for N = 149 depending on the IC distribution type, and stays high for much

(a) (b)

Figure 5.5: The strategy of mirror particles - space-time diagrams of (a) successful and
(b) unsuccessful leader election.
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N Uniform Density-Uniform

149 0.992 0.944
599 0.954 0.932
999 0.009 0.011

1001 0.989 0.971
1301 0.987 0.972

Table 5.7: Performance of the strategy of mirror particles using uniform and density-
uniform distributions.

larger N, such as, N = 599 with performance 0.932 and 0.954 respectively (Table

5.7). For N = 999 cells performance is extremely low; only about 0.01, yet for

even larger N, such as, 1001 and 1301, it rebounces to 0.97 for density-uniform

and 0.99 for uniform distribution. An explanation of this anomaly is the principal

restriction on the number of cells N. The strategy of mirror particles produces

satisfactory results for the leader election problem only for N ≡ 5 mod 6, N ≥ 23.

Our experiments show that the sequence of solvable number of cells is 15, 23, 29,

etc.

The fundamental leader-electing interactions α+β→ γ+ δ and γ+ δ→ ω are

phase dependent, i.e., their outcomes depend on the phase of colliding particles.

Since α and β are two-phase particles, their interactions have two possible results

α+β→ γ+δ | ∅. Similarly, γ and δ are three-phase particles, hence the interactions

γ+δ→ ω |α+β |α+β are possible. Note that the result of the second and the third

interaction of γ + δ is the same, but the interaction process is slightly different.

In the last phase of leader election, when γ + δ and partially α + β have to

turn around the whole configuration, the number of cells N becomes essential in

determining their phases in a moment of interaction. We identified typical results

of α + β and γ + δ interactions with respect to the modulo classes of N shown
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in Table 5.8. A goal to produce a single leader ω in a final configuration can be

achieved by the interaction γ + δ → ω occurring for N ≡ x mod 6, x ∈ {2, 5}.

Further, a pair of particles γ and δ needed for this interaction are produced from α

and β only for N ≡ x mod 6, x ∈ {1, 3, 5}. As a result, the only acceptable number

of cells allowing leader election (with satisfactory result) is 5 mod 6. Further, we

found by experimentation the constraint (N ≥ 23). CA dynamics for the modulo

classes 0, 2 and 4 produce a global zig-zag domain Λ1 (Figures 5.6(b), 5.6(d),

5.6(f)), the remainder 5 leads to a stable point of the leader particle ω (Figure

5.6(a)), and the remainders 1 and 3 result in a cyclic behavior α + β → γ + δ →

α + β → . . . (Figures 5.6(c), 5.6(e)). Let us recall that the predecessor of this

strategy, called the first-particle based strategy, is not N ≡ 5 mod 6 restricted and

for 999 cells reaches performance of about 0.7.

N mod 6 α + β→ γ + δ→

0 ∅ α + β

1 γ + δ α + β∗

2 ∅ ω

3 γ + δ α + β

4 ∅ α + β∗

5 γ + δ ω

Table 5.8: The strategy of mirror particles - typical results of the crucial leader-electing
interactions with respect to N modulo 6 classes.

5.3.2.6 Improved Strategy of Mirror Particles

The improved strategy of mirror particles is a successor of the previous strat-

egy. We evolved this strategy from an initial population consisting of randomly

perturbed chromosomes representing the strategy of mirror particles. The basic
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: The strategy of mirror particles - space-time diagrams annotated with particles
showing typical behavior for all N modulo 6 classes. The number of cells N goes from
149 (top left) to 154 (bottom right).
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particle mechanism stays the same, i.e., a leader is elected by a chain of interac-

tions α+β→ γ+ δ→ ω as shown in Figure 5.7. Only minor changes are present,

e.g., emission of particle ε disappeared.

Table 5.9 shows that performance has improved and for uniform distribution

reaches 0.997. Nevertheless, higher performance is offset by an additional N-

modulo restriction. Namely, this strategy is usable only for the N ≡ 5 modulo 12

number of cells.

(a) (b)

Figure 5.7: The improved strategy of mirror particles - space-time diagrams of (a) suc-
cessful and (b) unsuccessful leader election.
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N Uniform Density-Uniform

149 0.997 0.945
593 0.997 0.973
599 0.002 0.003
999 0.009 0.011

1001 0.996 0.979
1301 0.995 0.979

Table 5.9: Performance of the improved strategy of mirror particles using uniform and
density-uniform distributions.

5.3.2.7 Transition Table Density

The transition table density (λ) is the fraction of ones in transition table’s out-

puts. Figure 5.8 shows the fitness-λ correlation of the best chromosomes of each

population for all evolutionary runs we performed.

Unlike the density classification and synchronization tasks tackled by the EvCA

group [74, 32], where λ for the best-performing CAs is spread throughtout the

whole spectrum, the leader election task requires a very narrow λ range of 0.46.

Note that the critical region avoids 0.5-density, which could result in a symmetric

transition table and make leader election more difficult.

5.3.2.8 Overall N-Modulo Dependence

Because of the N-modulo restrictions we found for the best-performing CAs, we

asked whether there is a correlation between N-modulo dependence and perfor-

mance. More precisely, we investigated the relation between performance for the

training number of cells, 149, and universality of CA performance measured by

the number of N modulo 6 classes (N = 149, . . . , 154) that produce similar per-

formance as the N = 149 case.
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Figure 5.8: Relation between the fitness and λ (transition table density) for one-
dimensional leader election showing all chromosomes from both evolutionary sets. Note
a critical high-performing region around λ = 0.46.

As shown in Figure 5.10, poor strategies rank around the number 6, meaning

their performance is fairly uniform across different numbers of cells. As perfor-

mance increases, CA become more and more specialized with respect to modu-

larity of N. Our results suggest that the N-modulo specialization has a positive

impact on performance.

Recall that the best strategies achieve high performance by emission of parti-

cles moving through the whole configuration in opposite directions. The number

of cells N is therefore important in determining their phases at the moment of

eventual collision (assuming the particles do not colide with other particles before

making it all the way around the 1d ring). Also, particles with higher number

of phases allow more options for information processing and encoding, which
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benefits performance. As reported in [53], the number of different interaction out-

comes is directly proportional to a disparity of velocities of colliding particles.

Thus, particles with high opposite velocities have generally a higher probability

of more interaction results. As a matter of fact, the faster the particles, the faster

information can spread, and the sooner the final leader-electing sweeping can pro-

ceed. However, fast interactions have increasingly more alternative results, which

implies stronger N-modulo specialization.

Furthermore, we evaluated CAs from all evolutions to identify the one with

the most universal performance: the CA with least N-modulo restriction. Our

search for a N-modulo universal strategy with high performance was partially

successful. The strategy with best cumulative performance on N = 149, . . . , 154

(a) (b)

Figure 5.9: The N-modulo universal strategy - space-time diagrams of (a) successful and
(b) unsuccessful leader election.
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presented in following diagrams (Figure 5.9) does not scale well and fails for

larger N (Table 5.10). These findings suggest that for one-dimensional leader

election there is a tradeoff between performance and scalability on one side and

N-modulo universality on the other.
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Figure 5.10: Relation between performance P100
uni f 149(φ) and the ratio of cumulative perfor-

mance for all N modulo 6 classes (representatives):
∑154

N=149 P100
uni f N (φ)

P100
uni f 149(φ)

. N-modulo universality

(y-axis) represents the number of modulo classes (out of 6 defined) that produce similar
performance as the training number of cells N = 149.
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N Uniform Density-Uniform

149 0.821 0.625
599 0.135 0.115
999 0.019 0.010

Table 5.10: Performance of the N-modulo universal strategy using uniform and density-
uniform distributions.

5.4 Leader Election in Two-Dimensional Cellular

Automata

As presented in Section 3.1.2, we tackle leader election in two-dimensional CA

with square lattices, and Moore neighborhoods, i.e., square neighborhoods with

r = 1 and 9 cells. Since the transition table φ consists of 29 rows and the space

of possible solutions 229
is even larger than in the one-dimensional case, we again

search the solution space by GA. To generate initial chromosomes as well as test

ICs we use a uniform random distribution. To limit execution time we set tMAX =

300 steps of CA computation. We calculated fitness F I1
N (φ) for the training number

of cells N = 192. Note that we opted for N = 192, since it is a standardly used

benchmark lattice size [71, 20], large enough to require a global coordination of

cells.

Because the evolution of two-dimensional leader election is generally more

difficult than the one-dimensional case, we improved several key attributes of the

GA. We increased the population size M from 100 to 400, the number of test

ICs I from 100 to 500, as well as the number of generations from 100 to 200. The

selection is elitist with elite size (the number of chromosomes from one generation

which live and reproduce in the next) of 80 (20% of the total population). We also
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substituted a simple one-point crossover with more advanced shuffle crossover,

where each bit of the offspring is copied from either of the parents with even

probability. The remaining settings, such as per-bit mutation probability, are the

same as before.

After each evolution we determined performance PI2
N (φ) of selected chromo-

somes more accurately than fitness for both density-uniform and uniform distri-

butions, 1 ≤ N ≤ 40 and I2 = 104 test ICs.

5.4.1 Results of Evolving Cellular Automata

Compared to the one-dimensional case, evolution of two-dimensional CAs with

Moore neighborhood and size N = 192 take substantially longer due to the larger

neighborhood and lattice size. Further, synchronous updates in one-dimensional

CA benefited from a finite-state transducer representation of the transition table,

a technique impossible in two-dimensional CA. Even utilizing fixed-point detec-

tion, which halts simulations when a fixed point is reached before the max time,

the execution time of a single evolution is around 40 days on a single core. That

limited the number of evolutions we could perform.

For two-dimensional leader election we executed four sets of evolutionary

runs: the leader election with N = 192 (LE), the density minimization task (DM),

and two leader election tasks starting from an initial population generated from

the last best chromosomes of DM, one with with N = 192 (LE 192) and another

with N = 292 (LE 292).

We performed 10 evolutionary runs for the LE task with initial populations

generated at random. In all cases, the fitness stayed flat and did not rise above zero,
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hence, unlike the one-dimensional case, non-zero performance for randomly-generated

transition tables (chromosomes) are statistically very rare. Note that for leader

election a final configuration with a single active cell is supposed to be fixed.

Compared to the one-dimensional case the number of mandatory transitions im-

plementing the fixed point requirement is larger (discussed in Section 6.2.2). More

precisely, any transition table for leader election must contain 10 bits at specific

locations.

To aid the evolutionary search we introduced an intermediate task, the density

minimization (DM), which continuously reduces the density (the ratio of ones)

in a final fixed point configuration. Note that as opposed to the leader election

task, a maximization problem, the DM’s output (an error) needs to be minimized.

Formally, the minimum square non-zero density task DM is defined as

DM(s) =


( #1 s

N ) ⇐⇒ #1s > 0,Φ(s) = s

0.25 ⇐⇒ #1s = 0,Φ(s) = s

0 ⇐⇒ Φ(s) , s


,

where N is the number of cells and s is a final configuration. To prevent CA from

a trivial elimination of all active cells, we penalize configurations with no active

cells by 0.25. We square the error to impose a stronger evolutionary pressure for

lower densities. This is important especially because the evaluation is repeated

multiple times, and fitness is calculated as an average. Also note that we expect

a final configuration to be a fixed point to make the transition to an actual leader

election smoother.

We ran 20 evolutions, of which 12 reached fitness (error) smaller than 1. It
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means that 8 evolutions could not find a single chromosome resulting in a fixed

point configuration. Figure 5.11(a) presents the best (minimal) fitness of all evo-

lutionary runs. Once a fixed point solution is found the square error quickly drops

to the range (10−5, 10−4), with the overall last best fitness of 6.4 10−6.

The higher the performance for the original leader election task, the lower the

error for the DM task. Yet the opposite implication does not hold, since the DM

task might assign a low error to transition tables with configurations containing

two or more active cells, whose performance for the leader election task could be

only marginal. As a matter of fact, the DM task is not intended to solve the leader

election completely. The best chromosome of the DM task reached performance
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Figure 5.11: Fitness of the best chromosomes from each population of the three evolu-
tionary sets: DM, LE 192, and LE 292.
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of around 0.7 when run against the leader election task.

To further improve this result we switched back to the original leader election,

and we used the last best chromosomes of the DM task with < 1 error, which were

randomly perturbed to fill the full population of 200 chromosomes. In the third set

of evolutions, with the fitness determined by the actual leader election evaluation,

we ran 13 evolutions with the lattice size N = 192. As shown in Figure 5.11(b)

the best fitness starts at the range 0.7 − 0.8 and after 40 generations climbs above

0.9. The overall last best fitness is 0.996.

To investigate scalability of the system with respect to N we performed an

additional set of evolutions for leader election, again using the chromosomes from

the DM task, but with an increased lattice size N = 292. Since the system size is

substantially larger, the task is more difficult and fitness converges at slower pace.

Figure 5.11(c) shows all 13 evolutions starting from fitness 0.4 − 0.6 reaching

maximum at 0.986.

5.4.2 Analysis

The computational mechanics analysis employed in Section 5.3 has been intro-

duced by Crutchfield and Hanson [27, 49, 48] to describe the information pro-

cessing in one-dimensional CAs. An extension of computational mechanics to

higher dimensions faces major challenges. Due to non-linear spatial connections,

the identification of domains and particles based on ε-machine reconstruction and

finite state transducer representation could not be applied. Recently, Cenek [20]

proposed several methods that automatically identify spatio-temporal patterns and

describe their kinematic models using several filters based on local sensitivity
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[33], local statistical complexity [85], local information storage [85], and local

information transfer. These filters, however, fail to identify all spatio-temporal

structures in general, and the area of computational mechanics in higher dimen-

sions is currently being investigated. Since the goal of this thesis was not to pro-

pose new means for CA analysis, but rather dwell on existing mature techniques,

we opted for statistical methods classifying overall dynamics of two-dimensional

CAs through perturbation stability. The measures are the Derrida measure [34, 86]

(Section 5.4.2.6) and the damage spreading measure[83, 68], related to a discrete

version of Lyapunov exponent [17] (Section 5.4.2.7). We also investigated λ, the

transition table density, of the evolved CAs (Section 5.4.2.5).

5.4.2.1 Performance and Strategies

We evaluated leader election performance of the last best chromosomes from all

three evolutionary sets for square sizes N = 12 to 402. Figure 5.12 shows averaged

performance for all CAs for tMAX = 300 and 1000, and uniform and density-

uniform distributions of initial configurations.

As we will prove in Chapter 6, small lattices are generally very difficult to

solve due to the configuration symmetry and loose-coupling of active cells. As a

matter of fact, all CAs perform poorly for N < 52.

In general, performance peaks occur for low N for the density minimization

task, and move to larger sizes for leader election with N = 192. Finally CAs for

leader election targeting N = 292 are the most scalable and their performance

peaks are rather wide starting from N = 15. This shows that for targeted applica-

tions we can provide a CA that performs well on a specific range of system sizes.

Still, the best CA for LE 292 could reach > 0.9 performance even for a large lattice
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size of N = 402, and so its scalability allows it to cover the largest set of system

sizes. In Sections 5.4.2.6 and 5.4.2.7 we demonstrate that the CA’s performance
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Figure 5.12: Performance of the last best chromosomes from three evolutionary sets (DM,
LE 192, and LE 292) for the square sizes N = 12, . . . , 402 calculated as an average over
104 runs. The maximal time tMAX allowed for leader election is set to 300 steps in the left
and 1000 in the right column.
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and the task difficulty correlates highly with complexity and perturbation stability

calculated by the Derrida measure and damage spreading (Lyapunov exponent).

For most of the CAs the maximal time tMAX = 300 is sufficient to reach a

fixed point (if there is one) on any test size. Also, the execution time increases

slowly. In fact, time complexity is sublinear, i.e., < O(N). That is due to two-

dimensionality of a toroidal lattice, which allows to spread information from a

single cell to all other cells in 0.5
√

N steps with radius r = 1.

In the next sections, we present performance results as well as the best-performing

CAs for the DM, LE 192, and LE 292 tasks in more detail.

(a) t0 (b) t20 (c) t40 (d) t60

(e) t70 (f) t80 (g) t90 (h) t94

Figure 5.13: Example space-time diagrams of the best-performing density-minimizing
CA on lattice size N = 402. Figures show a CA computation starting from an initial
configuration with active cells distributed uniformly (time t0), followed by 7 state snap-
shots. The CA optimized for density minimization fails to elect a leader and reaches a
final configuration with 7 active cells at time t94.
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5.4.2.2 Density Minimization

The best CA evolved for the DM task has a peak performance of 0.92 for uniform

initial distributions and N = 142. For the lattice sizes N > 182 performance

quickly drops, since the DM approach is localistic. The performance for N = 392

is only 0.132 (Table 5.11).

The time needed to halt is around 100 steps for the benchmark size N = 192.

Density minimization is fast because there is only limited coordination between

leader-electing regions, which are fairly static and dense (shown in Figure 5.13).

This results in a quick disconnection of the regions, and therefore the number of

active cells in a final configuration is for N > 202 generally equal or larger than

2 (Figure 5.14). On the other hand, the number of active cells in a final fixed

point configuration is on average very low: 1.5 − 3 for N > 122 and uniform

distribution. In fact, it is lower than in evolved leader-electing CAs. Note that

minimizing density to a non-zero number does not necessarily imply a successful

leader election.

N Uniform Density-Uniform

192 0.770 0.646
292 0.371 0.301
392 0.132 0.104

Table 5.11: Performance of the best density-minimizing CA using uniform and density-
uniform initial distributions.
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Figure 5.14: Performance of the best density-minimizing CA for the square sizes N =

12, . . . , 402 calculated as an average over 104 runs using uniform and density-uniform
initial distributions. The maximal time tMAX allowed for leader election in (a) and (b) is
300. Figures (a) and (b) show the ratio of runs that end in a fixed point with a single active
cell (1 L FP), two active cells (2 Ls FP), three or more active cells (3+ Ls FP), or no fixed
point (No FP). Figure (c) plots the number of ones in a final configuration.

5.4.2.3 Leader Election Targeting N = 192

The best CA for the LE 192 task has significantly higher performance than any of

the density-minimizing CAs. For N = 192, performance reaches 0.987 for uni-

form and 0.807 for density-uniform distributions (Table 5.12). Note that density-

uniform distribution has (compared to uniform configurations) a bias for configu-

rations with low densities, which are generally more difficult, especially because

of the low radius r = 1.
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(a) t0 (b) t40 (c) t80 (d) t120

(e) t160 (f) t180 (g) t200 (h) t215

Figure 5.15: Example space-time diagrams of the best-performing leader-electing CA
targeting N = 192 on lattice size N = 402. Figures show a CA computation starting from
an initial configuration generated by a uniform distribution (time t0), followed by 7 state
snapshots. The CA reaches a final configuration with a single active cells at time t215.

Also, the system’s scalability improved and for N = 392 performance reaches

0.633 for uniform and 0.493 for density-uniform initial distributions (Figure 5.16).

The execution time increased to around 220 steps for N = 192. That is due to the

emergence of regular propagating regions, domains, and particles similar to those

found in space-time diagrams of one-dimensional leader election. As presented

in Figure 5.15 the initial random configuration with ones and zeros uniformly

distributed splits into different slowly-contracting regions, which keep connected

by lines of active cells. These regions propagate left, sweep any remaining active

cells, transform to a single moving line that shrinks from both sides, and finally

contracts to a single active cell.
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Figure 5.16: Performance of the best leader-electing CA targeting 192 for the square sizes
N = 12, . . . , 402 calculated as an average over 104 runs using uniform and density-uniform
initial distributions. The maximal time tMAX allowed for leader election in (a) and (b) is
300. Figures (a) and (b) show the ratio of runs that end in a fixed point with a single active
cells (1 L FP), two active cells (2 Ls FP), three or more active cells (3+ Ls FP), or no fixed
point (No FP). Figure (c) plots the number of ones in a final configuration.

N Uniform Density-Uniform

192 0.987 0.807
292 0.874 0.686
392 0.633 0.493

Table 5.12: Performance of the best leader-electing CA targeting N = 192 using uniform
and density-uniform initial distributions.
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5.4.2.4 Leader Election Targeting N = 292

Since the LE 292 task targets larger system’s sizes, performance of the best leader-

electing CA stays above 0.9 for N = 192 up to 402. Performance for N = 192

is 0.9672 for uniform and 0.768 for density-uniform initial distributions (Table

5.13). The system scales well and for N = 392 performance reaches 0.9078 for

uniform and 0.6918 for density-uniform distribution (Figure 5.18).

This is the best performing and most scalable CA, yet it is also the slowest.

Time complexity is, due to two-dimensional information spreading, still sublin-

ear. Similarly to LE 192, a large execution time is caused by propagating regions

that move around the lattice, contract, and eliminate any remaining active cells.

Performance is stable and reaches > 0.9 for all N ≥ 192.

(a) t0 (b) t40 (c) t80 (d) t120

(e) t160 (f) t180 (g) t200 (h) t212

Figure 5.17: Example space-time diagrams of the best-performing leader-electing CA
targeting N = 292 on lattice size N = 402. Figures show a CA computation starting with
a uniform initial distribution (time t0), followed by 7 state snapshots. The CA reaches a
final configuration with a single active cells at time t212.
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The main improvement is the occurrence of high-density regular domains

(111110)∗ and (11111110)∗. These domains contract at a slower pace, and so

reduce the risk of disconnection. Having more active cells in a configuration

helps it to keep propagating and contracting fronts together. Interestingly, be-

cause of an initial increase in density, the system is too unstable for small lattices

for which the CA cycles and never reaches a fixed point. Compared to previous

CA, the best LE 292 CA performs poorer on density-uniform initial distributions.

Low-density configurations, frequent among density-uniform distributions, harm

domains, which require a lot of active cells.

Last but not least, need for global coordination resulted in a higher occurrence

of modulo-dependent CA (Figure 5.12). Yet unlike the one-dimensional case, the

best-performing CAs are not necessarily more N-modulo restricted. That might

be due to a smaller radius r = 1, which restricts periodicity of moving particles or

propagating patterns, and so interaction results are less phase-dependent.

N Uniform Density-Uniform
tMAX = 300 tMAX = 1000 tMAX = 300 tMAX = 1000

192 0.9312 0.9672 0.7413 0.768
292 0.9726 0.9779 0.7549 0.7649
392 0.8884 0.9078 0.656 0.6918

Table 5.13: Performance of the best leader-electing CA targeting N = 292 using uniform
and density-uniform initial distributions and the maximal time tMAX = 300 and tMAX =

1000.
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(c) density-uniform, tMAX = 300
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(d) density-uniform, tMAX = 1000
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Figure 5.18: Performance of the best leader electing CA targeting 292 for the square sizes
N = 12, . . . , 402 calculated as an average over 104 runs using uniform and density-uniform
initial distributions. The maximal time tMAX allowed for leader election is 300 in (a) and
(b), and 1000 in (c) and (d). Figures (a-d) show the ratio of runs that end in a fixed point
with a single active cell (1 L FP), two active cells (2 Ls FP), three or more active cells
(3+ Ls FP), or no fixed point (No FP). Figure (e) plots the number of ones in a final
configuration.
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5.4.2.5 Transition Table Density

Recall that λ is transition table density, i.e., the fraction of ones in a transition

table. Figure 5.19 shows the fitness-λ correlation of the best chromosomes from

each population for the DM, LE 192, and LE 292 tasks. For all tasks, the λ-critical

regions enabling leader election are present. The critical region of the density

minimization task is (0.46− 0.52) with fitness (error) < 10−5, and (0.45− 0.6) and

(0.48 − 0.6) with fitness > 0.95 for the LE 192 and LE 292 respectively.

Recall that one-dimensional leader-electing CAs have optimal λ around 0.46.
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Figure 5.19: Relation between the fitness and λ (transition table density) of CAs from the
three evolutionary sets: DM, LE 192, and LE 292. Note that a critical high-performing
region for leader election (b-c) correlates with λ ∈ (0.48, 0.6) excluding 0.5.
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Because Moore neighborhoods in two-dimensional CAs has a small radius, the

risk of disconnecting active regions is higher. Further, a transition function must

output an active state more often and the λ-critical regions for leader election are

clustered on average for densities > 0.5. Also, the best-performing region has a

gap in densities around λ = 0.5, because λ = 0.5 transition tables are more likely

to be symmetric, which would impose an additional constraint on leader election

and solvable configurations (Section 6.1).

5.4.2.6 Derrida Measure

To investigate a dynamical regime of the evolved CAs we calculate their sensi-

tivity to perturbations as defined by the Derrida measure [34]. More precisely,

we trace the convergence or divergence of two perturbed configurations after

one update. Given perturbation strength p ≤ N, we first generate an initial

configuration s1 using uniform distribution and create another initial configura-

tion s2 by randomly flipping p bits in s1. The Hamming distance dt is therefore

dt = d(s1, s2) = p. Next, we run the CA on both configurations and again calculate

the Hamming distance at time t + 1 as dt+1 = d(Φ(s1),Φ(s2)). Now, the Derrida

measure [86], an annealed approximation of the system’s stability, is obtained by

plotting dt against dt+1 for different starting Hamming distances averaged over

sufficiently large numbers of samples and normalized by the system size N.

The Derrida measure, sometimes called the Derrida plot, describes how fast

a perturbation spreads to other cells in one time step. The identity line dt = dt+1

is important here, since it separates the dynamical regimes. The curves below the

identity line correspond to ordered systems, which are not sensitive to perturba-

tions, so information does not spread and eventually die out. If the dt+1
dt

ratio is
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larger than one the CA is chaotic, and so even a small state change diverges and

disturbs the system’s dynamics. Finally, the curves tangent to the identity line are

critical. In this region, also called the edge of chaos, a perturbation will not die

out nor spread out. The critical regime has been shown optimal for information

processing and computing. Furthermore, the most important part of the Derrida

plot is for the small Hamming distances. The more the Derrida curve lies above

the main diagonal for small values dt, the more chaotic the system.

Figure 5.20 presents the Derrida measure for randomly generated twodimen-
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Figure 5.20: Derrida curves for 100 randomly generated two-dimensional CAs with
Moore neighborhood, and the last best CAs from all evolutions for the density minimiza-
tion task (DM), and the leader election task with N = 192 (LE 192) and N = 292 (LE 292).
Averages over all CAs and 100 configurations per each Hamming distance dt are plotted.
Note that the identity line represents the critical dynamical regime, i.e., the closer to the
line, the more complex the dynamics. The portion shown in the plot is limited to dt ≤ 0.5.

82



5.4. LEADER ELECTION IN TWO-DIMENSIONAL CELLULAR AUTOMATA

sional CAs with Moore neighborhoods, and the best CAs for the three evolution-

ary tasks. Because Moore neighborhoods contains 9 cells, hence the in-degree of

each cell is 9, chaotic dynamics, where even a small perturbation results in tra-

jectories that diverge rapidly, is more likely. That has been shown by Kauffman

[58] for random Boolean networks, but it qualitatively applies also to CAs. That

coheres with our findings, since the Derrida curve for random CAs is far above

the line of criticality.

As expected, the dynamics of the density-minimizing CAs are more ordered,

since their Derrida curve lies bellow the curve for random CAs. The density min-

imization task is, however, not as challenging as leader election, whose Derrida

curve is closest to the identity line and its dynamics are, therefore, most complex.

In a nutshell, the more complicated the task, the more complex the CA dynamics

required to solve the problem.

5.4.2.7 Damage Spreading

Similarly to the Derrida measure, the damage spreading measure [83, 68] is a

form of sensitivity analysis. The idea is to track how fast the smallest possible

state perturbation of a single bit spreads throughout the CA.

By definition, the damage spreading d(T ) is simply the Hamming distance of

two trajectories of the same system after time T starting from two configurations

that differ only in a single position (bit) averaged over multiple runs. Here we

plot d(T ) for the last best chromosomes from our three evolutionary sets and 100

randomly generated two-dimensional CAs with Moore neighborhood. We per-

formed 1000 runs for each CA and tracked the distance for time T = 1 up to 300.

The curves show how fast a perturbation disturbs the system. Since leader elec-
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tion as well as density reduction tasks are supposed to minimize the number of

active cells after the initial expansion the Hamming distance decreases and finally

reaches low values around 10.

The most interesting part of these curves is the initial (steep) portion, which

shows the rate of convergence or divergence. That tells us how information trans-

mission and noise propagation are embedded in the system. In fact, d(1), the

Hamming distance after a single update, could be used for calculation of a variant

of Lyapunov stability (exponent) for discrete systems [17]. More precisely, the

Lyapunov exponent λ = limt→∞
1
T

(
d(T )
d(0)

)
could be approximated as

λ = ln(
d(1)

d(0)
).

Since d(0), the size of initial perturbation, is 1, λ = ln d(1). Note that the notation

for the Lyapunov exponent, λ, conflicts with a symbol used for the transition table

density introduced earlier. Since we present these two areas separately we follow
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Figure 5.21: Damage spreading for 100 randomly generated two-dimensional CAs with
Moore neighborhood, and the last best CAs from all evolutions for the density minimiza-
tion task (DM) and the leader election task with N = 192 (LE 192) and N = 292 (LE 292).
Averages for all CAs over 1000 runs are plotted.
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the original notations in both cases.

The critical line for the Lyapunov exponent is λ = 1. For λ > 1 the sys-

tem’s trajectories tend to diverge; the system is unstable and chaotic. For λ < 1

the system converges or contracts, hence it is stable and ordered. At the thresh-

old of these regions, around λ = 1, complex dynamics combining ordered and

chaotic properties occurs. This region promotes efficient information transfer and

processing.

Our results are consistent with the Derrida measure presented earlier. The CA

from LE 292, solving the most complicated instance of the problem, requiring

global coordination of cells, have low λ = 1.288 showing their dynamics are the

most complex. The CAs of the LE 192 task has slightly higher λ = 1.305, the DM

is already quite chaotic and reaches λ = 1.414, and finally randomly-generated

CAs are the most chaotic with λ = 1.499.

5.4.3 Asynchronous Leader Election

We demonstrated successful leader election in two-dimensional CAs. Here we

ask whether the synchronous update employed in standard CA architecture is re-

quired to solve this task. Namely, we evolve and analyze leader election in an

asynchronous CA, where the global update function Φ is implemented by invoca-

tion of each cell’s update φ(ηi) independently in a random order (permutation of

cells) during each global step. Note that because the order of asynchronous update

is random, the CA architecture is not deterministic anymore.

As in the synchronous case the leader election task expects a final configu-

ration to be a fixed point with a single active cell. Because of nondeterminism
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we simply assume that if the last two configurations are the same the system is

in a (weak) fixed point, which, however, does not have to hold if the CA’s run

continues. We again performed two sets of evolutions: an intermediate density

minimization task followed by the actual leader election task on N = 192 cells.

Note that solving asynchronous leader election was not our priority, and so we

performed only a limited number of evolutions; 4 for the density minimization

task, as well as for the leader election task.

Figure 5.22 presents a relation between fitness and transition table density λ.

Similarly to synchronous leader election, we found a critical region λ ∈ (0.61, 0.64).

This is higher compared to the synchronous instance, because in the asynchronous

case a transition table implementing leader election needs to output ones more of-

ten than zeros to make configurations more dense (less breakable).

Our results show that asynchronous leader election is indeed possible, and for

N = 192 performance of the best CA reaches 0.965 for uniform and 0.735 for
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Figure 5.22: Relation between the fitness and λ (transition table density) of asynchronous
CA from the density minimization (DM Async)and leader election (LE Async) evolution-
ary sets. Note that a critical high-performing region for leader election (b) correlates with
λ ∈ (0.61, 0.64).
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density-uniform initial distributions (Figure 5.24). Yet because of nondeterminis-

tic update, the asynchronous CA could not benefit from regular propagated pat-

terns enabling coordinated exchange of information over distances. Therefore, the

strategy of asynchronous leader election is to increase density of the contracting

regions in order to reduce the risk of disconnection (Figure 5.23). This strategy is

statistical and localistic, and so it works only partially and the CA scales poorly.

Performance for N = 392 and uniform distribution is 0.487. Due to an absence of

particles, there is no modularity and execution is fast (100 time steps for N = 192).

Yet nondeterminism makes runtime more variable. We admit that more thorough

investigation of asynchronous leader election is required, however, we leave that

research avenue for future consideration.

(a) t0 (b) t20 (c) t40 (d) t60

(e) t80 (f) t90 (g) t100 (h) t116

Figure 5.23: Example space-time diagrams of the best-performing asynchronous leader-
electing CA on lattice size N = 402. Figures show a CA computation starting from an
initial configuration generated by using uniform distribution (time t0), followed by 7 state
snapshots. The CA fails to elect a leader and reaches a final configuration with 2 active
cells at time t116.
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Figure 5.24: Performance of the best asynchronous leader-electing CA for the square
sizes N = 12, . . . , 402 calculated as an average over 104 runs using uniform and density-
uniform initial distributions. The maximal time tMAX allowed for leader election is 300 in
(a) and (b). Figures (a) and (b) show the ratio of runs that end in a fixed point with a single
active cells (1 L FP), two active cells (2 Ls FP), three or more active cells (3+ Ls FP), or
no fixed point (No FP). Figure (c) plots the number of ones in a final configuration.
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Symmetry,...,is one idea by
which man through the ages
has tried to comprehend and
create order, beauty and per-
fection.

Hermann Weyl (1885 - 1955) 6
Limitations and Performance Upper

Bound

Previously we identified and analyzed various one- and two-dimensional binary

CAs solving the problem of anonymous leader election. The most successful

strategies employed collective, global, particle-based computation [1, 28] and

reached very satisfactory performance of about 99% for a uniform distribution

of initial configurations.

It is now natural to ask whether a better-performing CA could exist. In this

chapter, we ask whether the performance could be further improved, and if so, to

what extent. Which initial configurations are insolvable for leader election? What

is a theoretical upper bound on the performance rate?

Let us recall that the leader election task is defined as a transformation of an

initial configuration to a final fixed point configuration with exactly one active

cell, where an active cell is a cell in the leader state 1 ∈ Σ. Note that for a binary
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CA, all non-active cells must be in the state 0. Formally

Definition 6.0.1. The leader election task T for the state set Σ (alphabet) and the

leader state 1 ∈ Σ is

T : ΣN → {s ∈ ΣN |#1s = 1,Φ(s) = s},

where #1s is the number of 1’s in a configuration s.

We say that CA for leader election is self-stabilizing whenever the system

eventually reaches a correct state with a single active (leader) cell, regardless of

the initial configuration. Note that the original definition [89] expects the pro-

cessors to be initially all in the same state. As we will show, the self-stabilizing

property cannot hold for all configurations.

We identify general limitations that no one- or two-dimensional CA can over-

come. We show that a minimal, fully uniform and anonymous architecture of

CA cannot produce a correct output from all input configurations. We enumer-

ate such insolvable configurations, including both symmetric and loosely-coupled

configurations, and we formulate a universal upper bound on performance for the

anonymous one-dimensional leader election problem. The first limitation is due to

symmetry of configurations, which is preserved during computation (Section 6.1).

The second one is a result of the stable point requirement on a final leader elec-

tion configuration, which implies insolvability of loosely-coupled configurations,

where the distance between active cells is too large (Section 6.2).

The calculated theoretical upper bound performance of one- and two-dimensional

CAs for the leader election problem is greater than performance of the best one-

and two-dimensional strategies, such as, the improved strategy of mirror particles
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6.1. SYMMETRIC CONFIGURATIONS

(Section 5.3.2.6) and the best two-dimensional CA targeting N = 192 (Section

5.4.2.3) and N = 292 (Section 5.4.2.4).

6.1 Symmetric Configurations

In this section we show that a specific class of initial configurations, namely sym-

metric configurations, are insolvable. A symmetric configuration consists of a

single sequence (pattern) replicated along the configuration in a certain direction

without any gaps. Note that the purpose of leader election and the presence of

symmetry are closely related. In fact, leader election is often referred to as sym-

metry breaking. Also, note that symmetric configurations as opposed to loosely-

coupled configurations discussed in Section 6.2 do not rely on specific radius nor

neighborhood function. The only assumption is that the neighborhood as well as

transition function are uniform.

6.1.1 One-Dimensional Symmetric Configurations

We start with a simple case of uniform configurations. As stated by Angluin [3],

uniform configurations are insolvable by any anonymous deterministic algorithm

(including one-dimensional CAs). Uniformity of CA can be manifested in its

transition function, deterministic update, synchronicity, topology, configuration,

and cells’ anonymity. Basically a fully symmetric or uniform system in terms

of its structure, configuration and computational mechanisms cannot produce any

reasonable or complex dynamics. We demonstrate this intuitive assumption in the

following lemma.
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Ti
m

e

295

0 Site 147

Figure 6.1: A space-time diagram of CA computation on a one-dimensional symmetric
configuration. Note that leader election from a symmetric configuration is impossible.

Lemma 6.1.1. A uniform configuration, which is any configuration consisting of

all cells in the same state (e.g., 0N , and 1N), is insolvable for leader election.

Proof By definition, Φ(s) = (φ(η0), . . . , φ(ηN−1)). Since s = aN , a ∈ Σ is a

uniform configuration, Φ(s) = (φ(a2r+1))N = bN for some b ∈ Σ, which is again

a uniform configuration. Therefore, only a stable point or a periodic cycle of

uniform configurations can be obtained. �

We now formally define a much larger class of symmetric configurations,

which include uniform configurations as a special case. Figure 6.1 shows a CA

computation on a one-dimensional symmetric configuration.
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Definition 6.1.1. A configuration s ∈ ΣN is symmetric iff s = qm, where q ∈ Σl for

some integers m > 1 and l > 0.

Corollary 6.1.2. For any a ∈ Σ, a uniform configuration of the form s = aN is

symmetric.

Corollary 6.1.3. For any symmetric configuration s = qm ∈ ΣN , it must be the

case that m | N.

Remark: Since our CA’s topology is cyclic, a symmetric configuration might have

the form s = bqm−1a, where ab = q. Such a configuration s is, however, equal to

ba . . . ba, hence s = rm, where r = ba, which is a symmetric configuration in the

original non-cyclic form.

Lemma 6.1.4. The neighborhoods in a symmetric configuration s = qm ∈ ΣN are

symmetric. Specifically, for any i ∈ {0, . . . ,N − 1}, the neighborhoods in s satisfy

ηi = ηi+l(mod N),

where l = N/m.

Proof Suppose there exists an i for which ηi , ηi+l, (mod N), and suppose ηi has

radius r in a symmetric configuration s = qm. Then (with indices taken mod N),

ηi = (si−r, . . . , si+r) , (si+l−r, . . . , si+l+r) = ηi+l

and there exists some j (−r ≤ j ≤ r) such that si+ j , si+l+ j, which contradicts the

assumption that s is symmetric. �
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Lemma 6.1.5. If a configuration s is symmetric then Φ(s) is symmetric, for any

uniform global transition rule Φ.

Proof By Lemma 6.1.4,

Φ(s) = Φ(qm) = (φ(η0) . . . φ(ηl−1))m.

�

Theorem 6.1.6. Leader election from a symmetric configuration is not possible.

Proof Let 1 ∈ Σ be the leader state and s = qm for some m > 1 be a symmetric

configuration. Using Lemma 6.1.5, Φn(s) is symmetric for any positive integer

n, so that Φn(s) = wm. Let the number of 1-occurrences in Φn(s) be k. Trivially,

k =#1 Φn(s) = m#1w, and therefore m | k. Since m > 1, either k = 0 or k > 1 and

#1Φ
n(s) , 1, which violates the requirement of leader election that only one cell is

active in the final configuration. �

Now, we will enumerate all symmetric configurations of size N. Note that all

theorems and proofs assume we have a one-dimensional CA.

Definition 6.1.2. We denote by S N(l) = {qm|q ∈ Σl,N = lm} the set of all symmet-

ric configurations of length N over the alphabet Σ with pattern size l.

Corollary 6.1.7. For any l|N, we have |S N(l)| = |Σl| = |Σ|l.

Lemma 6.1.8. S N(l1) ∩ S N(l2) ⊆ S N(gcd(l1, l2))

Proof Let s ∈ S N(l1) ∩ S N(l2), so that si = s j whenever i ≡ j (mod l1) or i ≡ j

(mod l2). Let d =gcd(l1, l2) and recall ∃m, n ∈ Z with d = ml1 + nl2. If i ≡ j (mod
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d) then j = i + qd for some q ∈ Z. Thus

s j = si+qml1+qnl2 = si+qml1 = si,

and s ∈ S N(d) as desired. �

Lemma 6.1.9. S N(l1) ⊆ S N(l2) ⇐⇒ l1 | l2.

Proof (⇒). Suppose S N(l1) ⊆ S N(l2), and let d =gcd(l1, l2). Then

S N(l1) = S N(l1) ∩ S N(l2) ⊆ S N(d),

by Lemma 6.1.8. So, by Corollary 6.1.7, we must have l1 ≤ d. But certainly d|l1,

so d = l1, which implies l1|l2.

(⇐). Let l2 = cl1 and s ∈ S N(l1). There exists q1 ∈ Σl1 such that s = q1
N/l1 .

Now, let q2 = q1
c. Since q2 ∈ Σl2 and l2 | N, q2 ∈ S N(l2). �

Lemma 6.1.10. S N(gcd(l1, l2)) = S N(l1) ∩ S N(l2)

Proof Let d =gcd(l1, l2). Since d|l1 and d|l2, Lemma 6.1.9 implies S n(d) ⊆ S N(l1)

and S N(d) ⊆ S N(l2), forcing S N(d) ⊆ S N(l1)∩ S N(l2). The reverse inclusion holds

by Lemma 6.1.8. �

Corollary 6.1.11.

|S N(l1) ∪ S N(l2)| = |S N(l1)| + |S N(l2)| − |S N(gcd(l1, l2))|.

Proof Immediate by Lemma 6.1.10 and inclusion-exclusion. �
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Definition 6.1.3. We denote by S N the set of all symmetric configurations of length

N over the alphabet Σ, so that

S N =
⋃

l|N,l<N

S N(l).

Lemma 6.1.12. Let N =
∏ω(N)

i=1 pαi
i be the prime factorization of N, where ω(N)

denotes the number of distinct prime factors. Then

S N =

ω(N)⋃
i=1

S N (N/pi) .

Proof (⊆). Let s ∈ S N , so that s ∈ S N(l) for some l < N with l|N. We may

write l =
∏ω(N)

i=1 pβi
i , where βi ≤ αi for each i. Since l < N there must be some j

such that β j < α j, and therefore l|(N/p j). By Lemma 6.1.9 S N(l) ⊆ S N(N/p j), so

s ∈ S N(N/p j).

(⊇). Immediate by Definition 6.1.3. �

Theorem 6.1.13. Let N =
∏ω(N)

i=1 pαi
i be the prime factorization of N, where ω(N)

denotes the number of distinct prime factors. Then

|S N | =

ω(N)∑
i=1

(−1)i+1
∑

J⊆{1,...,ω(N)}
|J|=i

|Σ|N/
∏

j∈J p j

Proof By Lemma 6.1.12 and the inclusion-exclusion principle

|S N | =

∣∣∣∣∣∣∣
ω(N)⋃
i=1

S N (N/pi)

∣∣∣∣∣∣∣
=

ω(N)∑
i=1

(−1)i+1
∑

J⊆{1,...,ω(N)}
|J|=i

∣∣∣∣∣∣∣⋂j∈J

S N

(
N/p j

)∣∣∣∣∣∣∣
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By Lemma 6.1.10, for each J ⊆ {1, ..., ω(N)} we have

⋂
j∈J

S N

(
N/p j

)
= S N(d)

where d = gcd
{
N/p j

}
j∈J

= N/
∏

j∈J p j. Finally, using Corollary 6.1.7

|S N(d)| = |Σ|N/
∏

j∈J p j .

�

Example: Let N = pα1
1 pα2

2 , then |S N | = |Σ|
N
p1 + |Σ|

N
p2 − |Σ|

N
p1 p2 . For example, when

N = 24 and |Σ| = 2 we have |S 24| = 212 + 28 − 24 = 4336.

Example: Let N = pα1
1 pα2

2 pα3
3 , then |S N | = |Σ|

N
p1 + |Σ|

N
p2 + |Σ|

N
p3 − |Σ|

N
p1 p2 − |Σ|

N
p1 p3 −

|Σ|
N

p2 p3 + |Σ|
N

p1 p2 p3 . For example, when N = 60 and |Σ| = 2 we have |S 60| = 230 +

220 + 212 − 210 − 26 − 24 + 22 = 1074793396.

Definition 6.1.4. For any state a ∈ Σ and N, k ∈ N, we define the set Da
N,k to be

the set of all configurations with exactly k sites in state a:

Da
N,k = {s ∈ ΣN | #as = k}.

Accordingly, we denote by S a
N,k the set of such configurations that are symmetric,

so that

S a
N,k = S N ∩ Da

N,k.

And for any l ∈ N, S a
N,k(l) denotes the set of those configurations in S a

N,k that have
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pattern size l, so that

S a
N,k(l) = S N(l) ∩ Da

N,k.

Corollary 6.1.14. For any state a ∈ Σ and any N, k, l ∈ N,

S a
N,k(l) , ∅

iff N
l is an integer that divides k.

Lemma 6.1.15. For a given state a ∈ Σ, and m such that m | N and m | k,

∣∣∣∣∣S a
N,k

(N
m

)∣∣∣∣∣ =

(N
m
k
m

)
(|Σ| − 1)

N−k
m

Proof Let s ∈ S a
N,k(

N
m ). Then s = qm for some q ∈ Σ

N
m , and so #aq = k/m. To

enumerate the number of such configurations, we first have to choose k/m of the

N/m sites in q to be in state a, and then fill the remaining N/m − k/m sites of q

with states from Σ \ {a}. �

Theorem 6.1.16. Pick N, k ∈ N with k ≤ N and let d = gcd(k,N). Let N =∏ω(N)
i=1 pαi

i , k =
∏ω(k)

i=1 qβi
i , and d =

∏ω(d)
i=1 rγi

i be the prime factorizations of N, k, d,

respectively. Then for any a ∈ Σ,

|S a
N,k| =

ω(d)∑
i=1

(−1)i+1
∑

J⊆{1,...,ω(d)}
|J|=i

( N∏
j∈J r j

k∏
j∈J r j

)
(|Σ| − 1)(N−k)/

∏
j∈J r j .
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Proof Using Definition 6.1.4, Lemma 6.1.12, and Corollary 6.1.14,

S a
N,k =

ω(N)⋃
i=1

S N(N/pi)

⋂ Da
N,k

=

ω(N)⋃
i=1

S a
N,k(N/pi)

=

ω(d)⋃
i=1

S a
N,k(N/ri).

By the inclusion-exclusion principle

|S a
N,k| =

ω(d)∑
i=1

(−1)i+1
∑

J⊆{1,...,ω(d)}
|J|=i

∣∣∣∣∣∣∣⋂j∈J

S a
N,k(N/r j)

∣∣∣∣∣∣∣ .
Now, by Lemma 6.1.10

⋂
j∈J

S a
N,k(N/r j) =

⋂
j∈J

S N(N/r j)

 ∩ Da
N,k

= S N(gcd{N/r j | j ∈ J}) ∩ Da
N,k

= S N(N/
∏

j∈J r j) ∩ Da
N,k

Finally using Lemma 6.1.15,

|S N(N/
∏

j∈J r j) ∩ Da
N,k| =

( N∏
j∈J r j

k∏
j∈J r j

)
(|Σ| − 1)(N−k)/

∏
j∈J r j .

�

Corollary 6.1.17. For any state set Σ and any state a ∈ Σ, the set S a
N,0 equals the

set S N for the state set Σ \ {a}.
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Corollary 6.1.18. The number of binary symmetric configurations (|Σ| = 2) with

k sites in state a is given by

|S a
N,k| =

ω(d)∑
i=1

(−1)i+1
∑

J⊆{1,...,ω(d)}
|J|=i

( N∏
j∈J r j

k∏
j∈J r j

)
.

Example: Let N = pα1
1 pα2

2 , and k = p1 p2. Then for any a ∈ Σ, we have |S a
N,k| =( N

p1
k

p1

)
(|Σ| − 1)

N−k
p1 +

( N
p2
k

p2

)
(|Σ| − 1)

N−k
p2 −

( N
p1 p2

k
p1 p2

)
(|Σ| − 1)

N−k
p1 p2 . For example, when N = 24,

k = 6, and |Σ| = 2, we have |S a
24,6| =

(
12
3

)
+

(
8
2

)
−

(
4
1

)
= 244.

(a) t0 (b) t1 (c) t2

Figure 6.2: Space-time diagrams of CA computation on a two-dimensional symmetric
configuration showing a lattice at three consecutive time steps. Note that leader election
from a symmetric configuration is impossible.

6.1.2 Two-Dimensional Symmetric Configurations

Compared to the one-dimensional case, two dimensions allow more possibilities

for symmetries. In this section we generalize the concept of configuration sym-

metry by employing vector projections and group theory. In fact, the formulas

and methodology we use to enumerate two-dimensional symmetric configurations
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could be easily extended to arbitrary many dimensions. Also, we deal with two-

dimensional square configurations only, but we suggest most of the Lemmas and

Theorems could be extended to incorporate arbitrary rectangle shapes. For consis-

tency, however, we leave the rectangle extension for future consideration. Figure

6.2 shows a CA computation on a two-dimensional symmetric configuration.

Definition 6.1.5. For a non-zero vector (pattern shift) v ∈ Zn × Zn we denote by

S n×n(v) = {s ∈ Σn×n | ∀u ∈ Zn × Zn : su = su⊕v}

the set of all symmetric square configurations of size N = n2 over the alphabet Σ,

where ⊕ is a coordination-wise addition operation defined on Zn.

It means that any projection by a non-zero vector v defines a configuration

symmetry. Having that, we can bridge symmetric configurations with the group

theory. From now on we will call a vector we use for state projection a group

generator.

Corollary 6.1.19. For a non-zero vector (generator) v = (l1, l2) ∈ Zn × Zn

S n×n(v) = {s ∈ Σn×n | ∀u ∈ Zn × Zn : ∀w ∈ 〈v〉 : su = su⊕w},

where 〈v〉 is a cyclic subgroup {(c l1, c l2) | c ∈ N} over additive group Zn × Zn, i.e.

〈v〉 ≤ Zn × Zn. Trivially, the order of 〈v〉, written as |〈v〉| divides |Zn × Zn| = n2.

Lemma 6.1.20. |S n×n(l1, l2)| = |Σ|n gcd(l1,l2,n).

Proof Since a vector (l1, l2) applied to a state fixes |〈(l1, l2)〉| states in total, the

number of state choices and therefore also the size of each symmetric propagated
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pattern is |S n×n(l1, l2)| = n2

|〈(l1,l2)〉| . Furthermore, for l ∈ Zn, |〈l〉| = n
gcd(l,n) , so

|〈l1, l2〉| = lcm(
n

gcd(l1, n)
,

n
gcd(l2, n)

) =
n

gcd(l1, l2, n)
,

where lcm is a least common multiplier. Finally,

|S n×n(l1, l2)| =
n2

n
gcd(l1,l2,n)

= n gcd(l1, l2, n)

�

Remark: Note that if l1 = 0 (or l2 = 0), gcd(0, n) = n, and |〈(0, l2)〉| = |〈l2〉|, which

is a special one-dimensional case we handled in the previous section.

Lemma 6.1.21. The neighborhoods in a symmetric square configuration defined

by any non-zero vector v ∈ Zn×Zn are symmetric. Specifically, for any w ∈ Zn×Zn,

the neighborhoods satisfy

ηw = ηw⊕v,

where ⊕ is addition defined on Zn.

Proof Suppose the neighborhood function is defined by (relative) vectors u1, . . . , um,

i.e., ηw = (sw⊕u1 , . . . , sw⊕um) and assume the Lemma does not hold, i.e., there exists

w for which ηw , ηw⊕v. Then,

ηw = (sw⊕u1 , . . . , sw⊕um) , (s(w⊕v)⊕u1 , . . . , s(w⊕v)⊕um) = ηw⊕v

and so there exists some u j such that sw⊕u j , s(w⊕v)⊕u j , i.e., sw⊕u j , s(w⊕u j)⊕v, which

contradicts the assumption that s is symmetric by vector v. �
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Lemma 6.1.22. If symmetry of a square configuration s is defined by vector v then

Φ(s) is also v-symmetric, for any uniform global transition rule Φ.

Proof Suppose q = Φ(s) is not symmetric by v. Then, there exists u ∈ Zn × Zn,

such that qu , qu⊕v. By Lemma 6.1.21, ηsu = ηsu⊕v , and so

qu = φ(ηsu) = φ(ηsu⊕v) = qu⊕v,

which is a contradiction. �

Theorem 6.1.23. Leader election from a symmetric square configuration s is not

possible.

Proof Let 1 ∈ Σ be the leader state and s be a symmetric configuration defined by

vector v = (l1, l2). Using Lemma 6.1.22, q = Φm(s) is also symmetric by vector

v for any positive integer m. Let the number of 1-occurrences in q be k. Trivially,

|〈v〉| divides k. Since v , (0, 0), |〈v〉| = n
gcd(l1,l2,n) > 1, and either k = 0 or k > 1.

Since k , 1, the requirement of leader election that only one cell is active in the

final configuration is violated. �

Now, we will enumerate all symmetric square two-dimensional configurations

of size N = n2. To further investigate the relations among symmetric configura-

tions we need to define the symmetric configurations over several generators.

Definition 6.1.6. We denote by

S n×nL = {s ∈ Σn×n | ∀u ∈ Zn × Zn, ∀v ∈ 〈L〉 : su = su⊕v}
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the set of all symmetric square configurations of size N = n2 over the alphabet Σ

with generator set L ⊆ Zn × Zn, where ⊕ is a coordinate-wise addition operation

defined on Zn, and 〈L〉 = {c1v1 ⊕ . . . ⊕ c|L|v|L| | ci ∈ Zn}

Corollary 6.1.24. |S n×nL| =
n2

|〈L〉|
.

Corollary 6.1.25. For vectors v1, v2 ∈ Zn × Zn

S n×n(v1) ∩ S n×n(v2) = S n×n{v1, v2}.

Lemma 6.1.26. For two vectors v1, v2 ∈ Zn × Zn

|〈v1, v2〉| =
|〈v1〉||〈v2〉|

|〈v1〉 ∩ 〈v2〉|
.

Proof By basic linear algebra 〈v1, v2〉 = {c1v1 + c1v2 | c1, c2 ∈ Zn}, hence there

are |〈v1〉||〈v2〉| selections of vectors from 〈v1〉 and 〈v2〉. However, each vector from

〈v1, v2〉 is included |〈v1〉 ∩ 〈v2〉| times. �

Corollary 6.1.27. |S n×n(v1) ∩ S n×n(v2)| = n2 |〈v1〉∩〈v2〉|

|〈v1〉||〈v2〉|
.

Corollary 6.1.28. |S n×n(v1) ∪ S n×n(v2)| =

|S n×n(v1)| + |S n×n(v2)| − |S n×n(v1) ∩ S n×n(v2)| = n2(
1
|〈v1〉|

+
1
|〈v1〉|

−
|〈v1〉 ∩ 〈v2〉|

|〈v1〉||〈v2〉|
)

.

Lemma 6.1.29. S n×n(v1) ⊆ S n×n(v2) ⇐⇒ 〈v1〉 ≥ 〈v2〉.

Proof (⇒). Suppose S n×n(v1) ⊆ S n×n(v2). Then S n×n(v1) = S n×n(v1) ∩ S n×n(v2) =

S n×n{v1, v2} by Corollary 6.1.25. Then |〈v1〉| = |〈v1, v2〉|, and therefore 〈v2〉 does

not add any extra element and so it must be a subgroup 〈v1〉 ≥ 〈v2〉 as desired.
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(⇐). Suppose S n×n(v1) * S n×n(v2) and 〈v1〉 ≥ 〈v2〉. Let s ∈ S n×n(v1) such that

s < S n×n(v2), hence s is symmetric under v1, but not under v2. Hence, there exists

su such that su , su⊕v2 . However, since 〈v2〉 is a subgroup of 〈v1〉, v2 ∈ 〈v1〉, and

because s ∈ S n×n(v1), su⊕ = su⊕v2 , which is a contradiction. �

Definition 6.1.7. We denote by S n×n the set of all square symmetric configurations

of length N = n2 over the alphabet Σ, so that

S n×n =
⋃

v∈Zn×Zn

S n×n(v).

Lemma 6.1.30. For a prime p that divides n and 0 ≤ i < n, a cyclic group 〈( n
p , i

n
p )〉

is minimal, i.e., its only strict subgroup is trivial (0, 0).

Proof Since each subgroup of a cyclic group is cyclic the order of group must be

divisible by the order of subgroup. Hence, for 〈v〉 ≤ 〈( n
p , i

n
p )〉

|〈v〉| divides

∣∣∣∣∣∣
〈(

n
p
, i

n
p

)〉∣∣∣∣∣∣
|〈v〉| divides

n
gcd( n

p , i
n
p , n)

= p

Therefore, the order of a subgroup 〈v〉 is either 1 or p, i.e. 〈v〉 is either 〈(0, 0)〉 or

〈( n
p , i

n
p )〉. �

Remark: By swapping the coordinates, the proof applies also to each subgroup of

the form 〈(i n
p ,

n
p )〉.

Lemma 6.1.31. Let n =
∏ω(n)

i=1 pαi
i be the prime factorization of n, where ω(n)

denotes the number of distinct prime factors. Then
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S n×n =
⋃
w∈Gn

S n×n(w),

where Gn is the set of generators

Gn =

ω(n)⋃
j=1

Gn(p j)

and

Gn(p) =

p−1⋃
i=0

(
n
p
, i

n
p

)⋃{(
0,

n
p

)}
.

Proof (⊆). Let s ∈ S n×n, so that s ∈ S n×n(v) for some v = (a, b) ∈ Zn × Zn.

We will show that for some w ∈ Gn, 〈w〉 ≤ 〈v〉, which by using Lemma 6.1.29

S n×n(v) ⊆ S n×n(w) and s ∈ S n×n(w).

Now, we have two options to consider:

• Let gcd(a, n) , 1. We assume gcd(a, b, n) = 1 (if not we can divide all the

numbers by the gcd first). We pick a vector v′ = (0, bn
a ), which generates

a subgroup of 〈v〉. Because gcd(a, b, n) = 1, bn
a is non-zero in Zn and there

exists a prime p such that w = (0, n
p ), a generator from Gn(p), generates a

non-trivial subgroup of 〈v′〉 and transitively 〈w〉 ≤ 〈v〉 as required.

• Let gcd(a, n) = 1. Let i = b
a in modular Zn arithmetic, and p be a prime of

n. Then the vectors v and w = ( n
p , i

n
p ) ∈ Gn(p) are linearly dependent since

the determinant

|v w| =

∣∣∣∣∣∣∣∣∣
a n

p

b i n
p

∣∣∣∣∣∣∣∣∣ = 0.

106



6.1. SYMMETRIC CONFIGURATIONS

Therefore,

〈v〉 ∩ 〈w〉 = 〈gcd(n, lcm(a,
n
p

)), gcd(n, lcm(b, i
n
p

))〉,

and also

|〈v〉 ∩ 〈w〉| = gcd(|〈v〉|, |〈w〉|).

Now by Lemma 6.1.30

|〈v〉 ∩ 〈w〉| = gcd(|〈v〉|, p).

Since |〈v〉| divides n there exists p j such that p j divides |〈v〉|, and so gcd(|〈v〉|, p j) =

p j. That means 〈v〉 ∩ 〈w〉 = 〈w〉 and 〈w〉 ≤ 〈v〉.

(⊇). Immediate by Definition 6.1.7. �

Corollary 6.1.32.

|Gn| =

ω(n)∑
i=1

pi + ω(n).

Lemma 6.1.33. The generators from Gn are mutually linearly independent.

Proof Let u ∈ Gn(p), v ∈ Gn(q), u , v, then |〈u〉| = p and |〈v〉| = q. If p , q then

〈u〉 ∩ 〈v〉 = 〈(0, 0)〉, since p and q are primes. For p = q, we have two options:

• Let u = ( n
p , i

n
p ) and v = ( n

p , j n
p ) for i , j. If u and v were linearly dependent

in Zn×Zn, u′ = (1, i) and v′ = (1, j) would be linearly dependent in Zp×Zp,

and so the determinant |u′ v′| = ( j − i) = 0. That is however not possible

since i, j < p and i , j.
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• Let u = (0, n
p ) and v = ( n

p , j n
p ). Since n

p , 0 the vectors u and v are clearly

linearly independent.

Therefore any pair of generators from Gn is linearly independent as required. �

Lemma 6.1.34. For u, v ∈ Gn(p), u , v,

〈u, v〉 =

〈(
n
p
, 0

)
,

(
0,

n
p

)〉

and

|〈u, v〉| = p2

Proof (⊆). Let pick i , j, and assign u = ( n
p , i

n
p ) and v = ( n

p , j n
p ). Then u =

( n
p , 0) + i(0, n

p ) ∈ 〈( n
p , 0), (0, n

p )〉. Similarly, v = ( n
p , 0) + j(0, n

p ) ∈ 〈( n
p , 0), (0, n

p )〉.

Trivially also the case where u = ( n
p , i

n
p ) and v = (0, n

p ) holds for the same reason.

(⊇). Let pick i , j, and assign u = ( n
p , i

n
p ) and v = ( n

p , j n
p ). Then u − v =

(0, (i − j) n
p ) ∈ 〈u, v〉 as well as ju − iv = (( j − i) n

p , 0) ∈ 〈u, v〉. Therefore also

( n
p , 0) ∈ 〈u, v〉, and (0, n

p ) ∈ 〈u, v〉 since the order of u − v and ju − iv is p. If

u = ( n
p , i

n
p ) and v = (0, n

p ), u − iv = ( n
p , 0) ∈ 〈u, v〉. �

Theorem 6.1.35. Let n =
∏ω(n)

i=1 pαi
i be the prime factorization of n, where ω(n)

denotes the number of distinct prime factors. Then

|S n×n| =
∑

0≤l1≤(p1+1)
...

0≤lω(n)≤(pω(n)+1)

(−1)1+
∑ω(n)

i=1 li

ω(n)∏
i=1

(
pi + 1

li

) |Σ| n2∏ω(n)
i=1 p

min(li ,2)
i .
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Proof By Lemma 6.1.31, the inclusion-exclusion principle, and Corollary 6.1.25

|S n×n| =

∣∣∣∣∣∣∣⋃w∈Gn

S n×n(w)

∣∣∣∣∣∣∣ =

|Gn |∑
i=1

(−1)i+1
∑
J⊆Gn
|J|=i

∣∣∣∣∣∣∣⋂j∈J

S n×n( j)

∣∣∣∣∣∣∣ =
∑
J⊆Gn

(−1)|J|+1 |S n×nJ|

Since Gn =
⋃ω(n)

j=1 Gn(p j), we have ω(n) sets to choose the elements of J from,

so

|S n×n| =
∑

J1⊆Gn(p1)
...

Jω(n)⊆Gn(pωn )

(−1)1+
∑ω(n)

i=1 |Ji |

∣∣∣∣∣∣∣S n×n(
ω(n)⋃
i=1

Ji)

∣∣∣∣∣∣∣
Since Ji ⊆ Gn(pi), by Lemma 6.1.34 〈Ji〉 = 〈( n

pi
, 0), (0, n

pi
)〉 for |Ji| ≥ 2. So

for i , j, 〈Ji〉 and 〈J j〉 are linearly independent for any size |Ji| and |J j|. Since

|〈Ji〉| = pi for |Ji| = 1 and |〈Ji〉| = p2
i for |Ji| ≥ 2

∣∣∣∣∣∣∣
〈ω(n)⋃

i=1

Ji

〉∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
〈ω(n)⋃

i=1

〈Ji〉

〉∣∣∣∣∣∣∣ =

ω(n)∏
i=1

|〈Ji〉| =

ω(n)∏
i=1

pmin(|Ji |,2)
i

When we plug in the expression for |〈∪ω(n)
i=1 Ji〉|, we obtain

|S n×n| =
∑

J1⊆Gn(p1)
...

Jω(n)⊆Gn(pωn )

(−1)1+
∑ω(n)

i=1 |Ji |

|Σ| n2∏ω(n)
i=1 p

min(|Ji |,2)
i


Now, because the content of Ji is irrelevant and we care only about the car-

dinality |Ji|, for each size li = |Ji| we have
(
|Gn(pi)|

li

)
=

(
pi+1

li

)
ways of choosing li

elements from Gn(pi), which produces the final formula as required. �

Lemma 6.1.36. Let n =
∏ω(n)

i=1 pαi
i be the prime factorization of n, where ω(n)

denotes the number of distinct prime factors. Then an alternative counting of
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|S n×n| is

|S n×n| =
∑

0≤k1≤2
...

0≤kω(n)≤2

|Σ|

n2∏ω(n)
i=1 p

ki
i


∑

k1≤l1≤top(k1)
...

kω(n)≤lω(n)≤top(kω(n))

(−1)1+
∑ω(n)

i=1 li
ω(n)∏
i=1

(
pi + 1

li

) ,

where

top(ki) =


ki if ki < 2

pi + 1 if ki = 2.

Proof We know that the exponent of each pi in S n×n from Theorem 6.1.35 is at

most 2. Therefore for given k1, . . . , kω(n) ∈ {0, 1, 2} we could combine all binomial

expressions associated with |Σ|
n2∏ω(n)

i=1 p
ki
i . If ki ≤ 1 then we have

(
pi+1

ki

)
selections from

Gn(pi), and
⋃pi+1

li=2

(
pi+1

li

)
for ki = 2. These two expressions could be generalized as⋃top(ki)

li=ki

(
pi+1

li

)
using top function defined above. Therefore the total coefficient of

|Σ|

n2∏ω(n)
i=1 p

ki
i is

∑
k1≤l1≤top(k1)

...
kω(n)≤lω(n)≤top(kω(n)

(−1)1+
∑ω(n)

i=1 li
ω(n)∏
i=1

(
pi + 1

li

)

as required. �
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Example: Let n = 2α13α2 , then using counting from Theorem 6.1.35 |S n×n| =

(
3
1

)
|Σ|

n2
2 +

(
4
1

)
|Σ|

n2
3

−

(
3
2

)
|Σ|

n2

22 −

(
3
1

)(
4
1

)
|Σ|

n2
2 3 −

(
4
2

)
|Σ|

n2

32

+

(
3
3

)
|Σ|

n2

22 +

(
3
2

)(
4
1

)
|Σ|

n2

22 3 +

(
3
1

)(
4
2

)
|Σ|

n2

2 32 +

(
4
3

)
|Σ|

n2

32

−

(
3
3

)(
4
1

)
|Σ|

n2

22 3 −

(
3
2

)(
4
2

)
|Σ|

n2

22 32 −

(
3
1

)(
4
3

)
|Σ|

n2

2 32 −

(
4
4

)
|Σ|

n2

32

+

(
3
3

)(
4
2

)
|Σ|

n2

22 32 +

(
3
2

)(
4
3

)
|Σ|

n2

22 32 +

(
3
1

)(
4
4

)
|Σ|

n2

2 32

−

(
3
3

)(
4
3

)
|Σ|

n2

22 32 −

(
3
2

)(
4
4

)
|Σ|

n2

22 32

+

(
3
3

)(
4
4

)
|Σ|

n2

22 32

and by Lemma 6.1.36, |S n×n| =

|Σ|
n2
2

[
+

(
3
1

)]
+

|Σ|
n2
3

[
+

(
4
1

)]
+

|Σ|
n2
2 3

[
−

(
3
1

)(
4
1

)]
+

|Σ|
n2

22

[
−

(
3
2

)
+

(
3
3

)]
+

|Σ|
n2

32

[
−

(
4
2

)
+

(
4
3

)
−

(
4
4

)]
+

|Σ|
n2

22 3

[
+

(
3
2

)(
4
1

)
−

(
3
3

)(
4
1

)]
+

|Σ|
n2

2 32

[
+

(
3
1

)(
4
2

)
−

(
3
1

)(
4
3

)
+

(
3
1

)(
4
4

)]
+

|Σ|
n2

22 32

[
−

(
3
2

)(
4
2

)
+

(
3
3

)(
4
2

)
+

(
3
2

)(
4
3

)
−

(
3
3

)(
4
3

)
−

(
3
2

)(
4
4

)
+

(
3
3

)(
4
4

)]
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Definition 6.1.8. For any state a ∈ Σ and n, k ∈ N, we define the set Da
n×n,k to be

the set of all square configurations with exactly k sites in state a:

Da
n×n,k = {s ∈ Σn×n | #as = k}.

Accordingly, we denote by S a
n×n,k the set of such configurations that are symmetric,

so that

S a
n×n,k = S n×n ∩ Da

n×n,k.

And for any vector v ∈ Zn ×Zn, S a
n×n,k(v) denotes the set of those configurations in

S a
n×n,k that are generated by vector v, so that

S a
n×n,k(v) = S n×n(v) ∩ Da

n×n,k.

Corollary 6.1.37. For any state a ∈ Σ and n, k ∈ N, and v = (l1, l2) ∈ Zn × Zn

S a
n×n,k(v) , ∅

iff |〈v〉| = n
gcd(l1,l2,n) is an integer that divides k.

Lemma 6.1.38. For a given state a ∈ Σ, k ∈ N, and vector v ∈ Zn × Zn such that

|〈v〉| divides k

∣∣∣S a
n×n,k(v)

∣∣∣ =

( n2

|〈v〉|
k
|〈v〉|

)
(|Σ| − 1)

n2−k
|〈v〉|

Proof Let s ∈ S a
n×n,k(v). Then the number of selections of state in s, i.e. the

pattern size, is n2/|〈v〉|. To enumerate the number of such configurations, we first

112



6.1. SYMMETRIC CONFIGURATIONS

have to choose k/|〈v〉| over n2/|〈v〉| sites to be in state a, and then fill the remaining

n2/|〈v〉| − k/|〈v〉| sites with states from Σ \ {a}. �

Theorem 6.1.39. Pick n, k ∈ N with k ≤ n and let d = gcd(k, n). Let n =
∏ω(n)

i=1 pαi
i ,

k =
∏ω(k)

i=1 qβi
i , and d =

∏ω(d)
i=1 rγi

i be the prime factorizations of n, k, d, respectively.

Then for any a ∈ Σ,

|S a
n×n,k| =

∑
0≤l1≤(r1+1)

...
0≤lω(d)≤(rω(d)+1)

(−1)1+
∑ω(n)

i=1 li

ω(d)∏
i=1

(
ri + 1

li

) ( n2∏
ri

k∏
ri

)
(|Σ| − 1)

n2−k∏
ri ,

where
∏

ri =
∏ω(d)

i=1 rmin(li,2)
i .

Proof Using Definition 6.1.8, Lemma 6.1.31, and Corollary 6.1.37,

S a
n×n,k =

⋃
w∈Gn

S n×n(w)

⋂ Da
n×n,k

=

ω(N)⋃
i=1

⋃
w∈Gn(pi)

S a
n×n,k(w)

=

ω(d)⋃
i=1

⋃
w∈Gn(ri)

S a
n×n,k(w).

By the inclusion-exclusion principle

|S a
n×n,k| =

∑
J1⊆Gn(r1)

...
Jω(d)⊆Gn(rω(d))

(−1)1+
∑ω(d)

i=1 |Ji |

∣∣∣∣∣∣∣ ⋂w∈∪i Ji

S a
n×n(w)

∣∣∣∣∣∣∣ .
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Now, by Corollary 6.1.25

⋂
w∈∪ω(d)

i=1 Ji

S a
n×n,k(w) =

 ⋂
w∈∪ω(d)

i=1 Ji

S n×n(w)

 ∩ Da
n×n,k

= S n×n(∪ω(d)
i=1 Ji) ∩ Da

n×n,k

= S a
n×n,k(∪

ω(d)
i=1 Ji)

Finally let m = |〈∪
ω(d)
i=1 Ji〉|, then using Lemma 6.1.38,

|S a
n×n,k(∪

ω(d)
i=1 Ji)| =

( n2

m
k
m

)
(|Σ| − 1)

n2−k
m ,

where m = |〈∪
ω(d)
i=1 Ji〉| =

∏ω(d)
i=1 rmin(|Ji |,2)

i . �

Corollary 6.1.40. For any state set Σ and state a ∈ Σ, the set S a
n×n,0 equals the set

S n×n for the state set Σ \ {a}.

Corollary 6.1.41. The number of binary symmetric configurations (|Σ| = 2) with

k sites in state a is given by

|S a
n×n,k| =

∑
0≤l1≤(r1+1)

...
0≤lω(d)≤(rω(d)+1)

(−1)1+
∑ω(n)

i=1 li

ω(d)∏
i=1

(
ri + 1

li

) ( n2∏
ri

k∏
ri

)
,

where
∏

ri =
∏ω(d)

i=1 rmin(li,2)
i .
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Lemma 6.1.42. Pick n, k ∈ N with k ≤ n and let d = gcd(k, n). Let n =
∏ω(n)

i=1 pαi
i ,

k =
∏ω(k)

i=1 qβi
i , and d =

∏ω(d)
i=1 rγi

i be the prime factorizations of n, k, d, respectively.

Then for any a ∈ Σ,

|S a
n×n,k| =

∑
0≤k1≤2
...

0≤kω(d)≤2

( n2∏
ri

k∏
ri

)
(|Σ| − 1)

n2−k∏
ri


∑

k1≤l1≤top(k1)
...

kω(d)≤lω(d)≤top(kω(d))

(−1)1+
∑ω(d)

i=1 li
ω(d)∏
i=1

(
ri + 1

li

) ,

where

top(ki) =


ki if ki < 2

ri + 1 if ki = 2.

and
∏

ri =
∏ω(d)

i=1 rmin(ki,2)
i .

Proof Similarly to the proof of Lemma 6.1.36 the coefficient of each expression( n2∏
ri

k∏
ri

)
|Σ − 1|

n2∏
ri for given k1, . . . , kω(n) ∈ {0, 1, 2} is

∑
k1≤l1≤top(k1)

...
kω(d)≤lω(d)≤top(kω(d)

(−1)1+
∑ω(d)

i=1 li
ω(d)∏
i=1

(
ri + 1

li

)

. �
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Example: Let n = 2α13α2 , a ∈ Σ, and k = 2β13β2 , where β1 ≤ α1, β2 ≤ α2 then

using counting from Theorem 6.1.39 |S a
n×n,k| =

(
3
1

)(n2

2
k
2

)
(|Σ| − 1)

n2−k
2 +

(
4
1

)(n2

3
k
3

)
(|Σ| − 1)

n2−k
3

−

(
3
2

)(n2

22

k
22

)
(|Σ| − 1)

n2−k
22 −

(
3
1

)(
4
1

)( n2

2 3
k

2 3

)
(|Σ| − 1)

n2−k
2 3 −

(
4
2

)( n2

32

k
32

)
(|Σ| − 1)

n2−k
32

+

(
3
3

)(n2

22

k
22

)
(|Σ| − 1)

n2−k
22 +

(
3
2

)(
4
1

)( n2

22 3
k

22 3

)
(|Σ| − 1)

n2−k
22 3 +

(
3
1

)(
4
2

)( n2

2 32

k
2 32

)
(|Σ| − 1)

n2−k
2 32 +

(
4
3

)(n2

32

k
32

)
(|Σ| − 1)

n2−k
32

−

(
3
3

)(
4
1

)( n2

22 3
k

22 3

)
(|Σ| − 1)

n2−k
22 3 −

(
3
2

)(
4
2

)( n2

22 32

k
22 32

)
(|Σ| − 1)

n2−k
22 32 −

(
3
1

)(
4
3

)( n2

2 32

k
2 32

)
(|Σ| − 1)

n2−k
2 32 −

(
4
4

)(n2

32

k
32

)
(|Σ| − 1)

n2−k
32

+

(
3
3

)(
4
2

)( n2

22 32

k
22 32

)
(|Σ| − 1)

n2−k
22 32 +

(
3
2

)(
4
3

)( n2

22 32

k
22 32

)
(|Σ| − 1)

n2−k
22 32 +

(
3
1

)(
4
4

)( n2

2 32

k
2 32

)
(|Σ| − 1)

n2−k
2 32

−

(
3
3

)(
4
3

)( n2

22 32

k
22 32

)
(|Σ| − 1)

n2−k
22 32 −

(
3
2

)(
4
4

)( n2

22 32

k
22 32

)
(|Σ| − 1)

n2−k
22 32

+

(
3
3

)(
4
4

)( n2

22 32

k
22 32

)
(|Σ| − 1)

n2−k
22 32
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and by Lemma 6.1.42 |S a
n×n,k| =

(n2

2
k
2

)
(|Σ| − 1)

n2−k
2

[
+

(
3
1

)]
+(n2

3
k
3

)
(|Σ| − 1)

n2−k
3

[
+

(
4
1

)]
+( n2

2 3
k

2 3

)
(|Σ| − 1)

n2−k
2 3

[
−

(
3
1

)(
4
1

)]
+(n2

22

k
22

)
(|Σ| − 1)

n2−k
22

[
−

(
3
2

)
+

(
3
3

)]
+(n2

32

k
32

)
(|Σ| − 1)

n2−k
32

[
−

(
4
2

)
+

(
4
3

)
−

(
4
4

)]
+( n2

22 3
k

22 3

)
(|Σ| − 1)

n2−k
22 3

[
+

(
3
2

)(
4
1

)
−

(
3
3

)(
4
1

)]
+( n2

2 32

k
2 32

)
(|Σ| − 1)

n2−k
2 32

[
+

(
3
1

)(
4
2

)
−

(
3
1

)(
4
3

)
+

(
3
1

)(
4
4

)]
+( n2

22 32

k
22 32

)
(|Σ| − 1)

n2−k
22 32

[
−

(
3
2

)(
4
2

)
+

(
3
3

)(
4
2

)
+

(
3
2

)(
4
3

)
−

(
3
3

)(
4
3

)
−

(
3
2

)(
4
4

)
+

(
3
3

)(
4
4

)]

6.2 Loosely-Coupled Configurations

As stated in Definition 6.0.1, a final configuration s for the leader election task

must be a fixed point (Φ(s) = s) containing a single active cell (#1s = 1). A

crucial aspect of this definition is that once a leader is elected, the configuration

must freeze all following steps. This section discusses how the fixed point re-

quirement manifests in the underlying transition rule and how it affects the CA’s

performance.
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Ti
m

e

297

0 Site 148

Figure 6.3: A space-time diagram of leader-electing CA on a one-dimensional loosely-
coupled configuration, which is a configuration where distance of active cells ≥ 2r + 1.
Note that leader election from a loosely-coupled configuration (a fixed point) is impossi-
ble.

6.2.1 One-Dimensional Loosely-Coupled Configurations

Now we analyze the mandatory conditions that have to be satisfied by any transi-

tion rule of a one-dimensional CA solving the leader election problem. We will

use these mandatory (leader preserving) transitions to identify another set of prin-

cipally insolvable configurations. The leader preserving transitions are transitions

that guarantee a final leader configuration to be a fixed point. For instance, Table

6.1 shows the leader preserving transitions of a one-dimensional binary CA with

r = 3. In a final fixed point configuration, the leader cell uses the first rule, its

neighbors use the rules 2 − 7, and the rest of the cells use the rule 8. Figure 6.3
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shows a CA computation on a one-dimensional loosely-coupled configuration.

Num η φ(η) Num ηi φ(η)
1 0001000 1 5 0000100 0
2 1000000 0 6 0000010 0
3 0100000 0 7 0000001 0
4 0010000 0 8 0000000 0

Table 6.1: The mandatory rows for any leader preserving φ of a binary CA with r = 3.

Definition 6.2.1. Suppose φ is a transition rule of a uniform one-dimensional CA

with radius r. We say φ is leader preserving (LP) if and only if

φ(ηi) = si whenever #1ηi ≤ 1,

for any neighborhood ηi = (si−r, . . . , si, . . . , si+r).

Remark: In applications where |Σ| > 2, it could be desirable to weaken Definition

6.0.1 of the leader election task together with the implied constraint above by only

requiring φ(ηi) = si for a smaller collection of neighborhoods. For example, a

ternary CA could be designed to aim for final configurations where all non-leader

cells are in a specified state 0 , 1. In such cases, it would make sense to refer

to the condition (6.2.1) as strongly LP, and to the desired modification as weakly

LP, since the modified constraint would fix fewer configurations. For consistency,

however, we follow Definition 6.2.1 and leave weakly LP transitions for future

consideration.

Lemma 6.2.1. Let F denote the set of neighborhoods constrained in Definition
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6.2.1, so that F = {η ∈ Σ2r+1|#1η ≤ 1}. Then

|F | = (|Σ| − 1)2r(2r + 1) + (|Σ| − 1)2r+1.

Accordingly, every transition table for a leader election contains |F | mandatory

transitions (rows).

Proof There are exactly (|Σ| − 1)2r(2r + 1) neighborhoods with #1η = 1 and

(|Σ| − 1)2r+1 with #1η = 0. �

Definition 6.2.2. A configuration s ∈ ΣN is called loosely coupled if ηi ∈ F for

all i (0 ≤ i ≤ N − 1).

Corollary 6.2.2. A configuration s is loosely coupled whenever

si = s j = 1 implies 2r + 1 ≤ |i − j| ≤ N − 2r − 1

for any distinct i, j (0 ≤ i, j ≤ N − 1) and radius r.

We note that the restriction |i − j| ≤ N − 2r − 1 is needed above since our

configurations are read cyclically.

Corollary 6.2.3. If φ is uniform and leader preserving, and s is a loosely-coupled

configuration then Φ(s) = s.

Along with the desirable final configurations for leader election, the above

corollary indicates that there may be undesirable ones which must be fixed as well.

Our next definition will help us discuss the issues that arise when the distance

between cells in state 1 exceeds the length of the neighborhoods of the transition

rule φ.
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Definition 6.2.3. We denote by LN the set of all loosely-coupled configurations in

ΣN .

Theorem 6.2.4. Leader election from a loosely-coupled configuration s ∈ LN ,

where #1s , 1 is not possible.

Proof By Corollary 6.2.3, any s ∈ LN is a fixed point. Therefore, after n applica-

tions of Φ, the number of active cells in Φn(s) = s stays the same. �

We defined the loosely-coupled configurations, which are those configurations

where the distance between any two active cells is at least 2r + 1. Also, we

showed that loosely-coupled configurations are fixed points for any leader electing

or leader preserving CA. Now we will enumerate all such configurations.

Definition 6.2.4. The set of loosely-coupled configurations with exactly k active

cells (i.e., cells in state 1 ∈ Σ) is

LN,k = LN ∩ D1
N,k,

where D1
N,k = {s ∈ ΣN |#1s = k}.

Theorem 6.2.5. Let k be the number of active cells in a loosely-coupled configu-

ration with radius r, and f = N − k(2r + 1) be the number of free cells, which do

not belong to the neighborhood of any active cell. If f ≥ 0

|LN,k| =

((
k + f − 1

k − 1

)
(2r + 1) +

(
k + f − 1

k

))
(|Σ| − 1)N−k.

Proof Since s ∈ LN,k iff the neighborhoods of active cells do not overlap, the

problem of enumerating LN,k can be transformed to a problem of non-intersecting

121



6.2. LOOSELY-COUPLED CONFIGURATIONS

intervals. Specifically, we want to place k disjoint neighborhoods (intervals) of

size 2r + 1 over N sites. There are
(

k+ f
k

)
ways to form a sequence of length k + f

by distributing f free cells between k disjoint intervals.

However, since our configurations are cyclic, we must adjust this number. In

particular, each sequence that begins with an interval corresponds with 2r + 1

shifted configurations, depending on which cell in that active neighborhood is cell

0 of the configuration. As a result, there are
(

k+ f−1
k−1

)
(2r + 1) placements starting

with an active neighborhood and
(

k+ f−1
k

)
starting with a free cell.

Once all active cells are placed, there are N − k remaining cells to be filled

with inactive states, which can be done in (|Σ| − 1)N−k ways. �

Corollary 6.2.6. The number of active cells in a loosely-coupled configuration is

at most

kmax =

⌊ N
2r + 1

⌋
.

(a) t0 (b) t1 (c) t2

Figure 6.4: Space-time diagrams of CA computation on a two-dimensional loosely-
coupled configuration, which is a configuration where distance of active cells ≥ 2r + 1.
Note that leader election from loosely-coupled configurations (fixed points) is impossible.
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6.2.2 Two-Dimensional Loosely-Coupled Configurations

As defined in Section 3.1.2, a square neighborhood of two-dimensional CAs with

radius r contains (2r + 1)2 cells. Similarly to the one-dimensional case, each tran-

sition table for two-dimensional leader election must contain the leader preserving

transitions, which guarantee a final leader configuration to be a fixed point. For

instance, Table 6.2 shows the leader preserving transitions of a two-dimensional

binary CA with Moore neighborhood. In a final fixed point configuration, the

leader cell uses the first rule, its neighbors use the rules 2 − 9, and the rest of the

cells use the rule 10. Figure 6.4 shows a CA computation on a two-dimensional

loosely-coupled configuration.

Num η φ(η) Num ηi φ(η)
000 000

1 010 1 6 001 0
000 000
100 000

2 000 0 7 000 0
000 100
010 000

3 000 0 8 000 0
000 010
001 000

4 000 0 9 000 0
000 001
000 000

5 100 0 10 000 0
000 000

Table 6.2: The mandatory rows for any leader preserving φ of a binary two-dimensional
CA with Moore neighborhood.

Definition 6.2.5. Suppose φ is a transition rule of a uniform two-dimensional CA
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with radius r. We say φ is leader preserving (LP) if and only if

φ(ηu) = su whenever #1ηu ≤ 1,

for any location u ∈ Zn × Zn.

Lemma 6.2.7. Let F denote the set of neighborhoods constrained in Definition

6.2.5, so that F = {η ∈ Σ(2r+1)2
|#1η ≤ 1}. Then

|F | = (|Σ| − 1)(2r+1)2−1(2r + 1)2 + (|Σ| − 1)(2r+1)2
.

Accordingly, every transition table for a two-dimensional leader election contains

|F | mandatory transitions (rows).

Proof There are exactly (|Σ| − 1)(2r+1)2−1(2r + 1)2 neighborhoods with #1η = 1 and

(|Σ| − 1)(2r+1)2
with #1η = 0. �

Definition 6.2.6. A two-dimensional configuration s ∈ ΣN is called loosely cou-

pled if ηu ∈ F for all u ∈ Zn × Zn (N = n2).

Corollary 6.2.8. A two-dimensional configuration s is loosely coupled whenever

su = sv = 1 implies 2r+1 ≤ |u1−v1| ≤ n−2r−1∧2r+1 ≤ |u2−v2| ≤ n−2r−1

for any distinct u = (u1, u2), v = (v1, v2) ∈ Zn × Zn and radius r.

Corollary 6.2.9. If φ is uniform and leader preserving, and s is a loosely-coupled

configuration then Φ(s) = s.
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Definition 6.2.7. We denote by Ln×n the set of all loosely-coupled two-dimensional

(square) configurations in Σn × Σn.

Theorem 6.2.10. Leader election from a loosely-coupled configuration s ∈ Ln×n,

where #1s , 1 is not possible.

Proof By Corollary 6.2.9, any s ∈ Ln×n is a fixed point. Therefore, after n appli-

cations of Φ, the number of active cells in Φn(s) = s stays the same. �

We defined the loosely-coupled two-dimensional configurations, which are

those configurations where the distance between any two active cells is at least

2r + 1 for each axis.

Definition 6.2.8. The set of loosely-coupled two-dimensional configurations with

exactly k active cells (i.e., cells in state 1 ∈ Σ) is

Ln×n,k = LN ∩ D1
n×n,k,

where D1
n×n,k = {s ∈ Σn×n | #1s = k}.

As opposed to the one-dimensional case, enumeration of two-dimensional

loosely-coupled configurations is substantially more difficult. In fact, the problem

of enumerating loosely-coupled configurations is a generalized problem of non-

attacking kings. More precisely, the kings problem [65] is to calculate how many

different ways k kings can be placed on a chessboard n × n so that no two kings

can attack each other. This problem has not been solved universally for arbitrary k

and n, however, there exists several upper and lower bounds and approximations

[19]. Furthermore, a generating function [18] for a recursive formula has been

found only for a specific k (low values up to 7).
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Note that a kings placement is non-attacking iff each pair of kings is at least 2

sites apart (on each axis). Clearly, the enumeration of loosely-coupled configura-

tions is even more difficult, since a part of the problem is to enumerate different

placements of k active cells on lattice with cycled boundaries (toroid) where active

cells keep distance of at least 2r + 1. As a matter of fact, rather than deriving an

explicit formula for |Ln×n,k|, we numerically obtain approximate values by statis-

tical sampling. More specifically, we randomly draw k positions for active cells,

and then check whether the configuration is loosely coupled. After we repeat this

process 30, 000 times, we multiple the fraction of loosely-coupled configurations

with the total number of placements of k active cells
(

n2

k

)
. Finally, we can place

the remaining n2 − k inactive cells on lattice in (|Σ| − 1)n2−k ways. For faster enu-

meration we can bound the maximal number of active cells as follows.

Lemma 6.2.11. The number of active cells in a square loosely-coupled configu-

ration is at most

kmax =

⌊
n2

(2r + 1)2

⌋
.

6.3 Upper Bound on Performance

We have shown that symmetric and loosely-coupled configurations are insolvable

for leader election. To combine the enumerations of these configuration types, we

first characterize the configurations that are both symmetric and loosely-coupled

and then derive an overall upper bound on performance.
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6.3.1 One-Dimensional Upper Bound on Performance

Lemma 6.3.1. Fix any positive integers m ≤ k ≤ N, where m|N and m|k. Then the

set of all symmetric loosely-coupled configurations of length N over the alphabet

Σ with pattern size N
m and k active cells satisfies

|S N(N/m) ∩ LN,k| = |L N
m ,

k
m
|.

Proof Pick any element s of the left-hand side. Since s ∈ S N( N
m ), we know that

s = qm for some q ∈ Σ
N
m . Since s ∈ LN,k, it must also be the case that #1q = k/m.

Indeed, since s = qm ∈ LN,k, the 1’s in q must keep a (cyclic) distance of at least

2r +1 apart. Therefore q is a loosely-coupled (sub)configuration of size N/m with

k/m active cells, i.e., q ∈ L N
m ,

k
m

.

Conversely, any element q of the right-hand side gives rise to a unique element

s = qm of the left-hand side. �

Theorem 6.3.2. Pick N, k ∈ N with k ≤ N and let d = gcd(k,N). Let N =∏ω(N)
i=1 pαi

i , k =
∏ω(k)

i=1 qβi
i , and d =

∏ω(d)
i=1 rγi

i be the prime factorizations of N, k, d,

respectively. Then the number of symmetric loosely-coupled configurations of size

N with k active cells is

|S LN,k| = |S 1
N,k ∩ LN,k| =

ω(d)∑
i=1

(−1)i+1
∑

J⊆{1,...,ω(d)}
|J|=i

∣∣∣∣∣L N∏
j∈J r j

, k∏
j∈J r j

∣∣∣∣∣ .
Proof As in the proof of Theorem 6.1.16, S 1

N,k =
⋃ω(d)

i=1 S 1
N,k(N/ri). So by the
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inclusion-exclusion principle

|S 1
N,k ∩ LN,k| =

ω(d)∑
i=1

(−1)i+1
∑

J⊆{1,...,ω(d)}
|J|=i

∣∣∣∣∣∣∣⋂j∈J

S 1
N,k(N/r j) ∩ LN,k

∣∣∣∣∣∣∣ .
Now, by Lemma 6.1.10, and since LN,k ⊆ D1

N,k

⋂
j∈J

S 1
N,k(N/r j) ∩ LN,k = S N

(
N∏
j r j

)
∩ D1

N,k ∩ LN,k

= S N

(
N∏
j r j

)
∩ LN,k

Finally using Lemma 6.3.1,

∣∣∣∣∣∣S N

(
N∏
j r j

)
∩ LN,k

∣∣∣∣∣∣ =

∣∣∣∣∣L N∏
j r j
, k∏

j r j

∣∣∣∣∣ .
�

To calculate the probability that a randomly drawn configuration is insolv-

able, we can either use a uniform distribution, where the probability of selecting

each symbol from Σ for si in configuration s is the same, or we can use a den-

sity uniform distribution, where the probability of selecting k active cells #1s = k

is uniform. The probability that a configuration is insolvable is, therefore, given

below.
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Figure 6.5: Probability of selecting insolvable binary configurations for one-dimensional
symmetric and/or loosely-coupled configurations using uniform and density-uniform dis-
tributions and radius r = 3.
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Punif(s ∈ S N ∪ LN) =
1
|Σ|N

∑
k∈{0,2,...kmax}

|S N,k| + |LN,k| − |S LN,k|

Pdens(s ∈ S N ∪ LN) =
1

N + 1

∑
k∈{0,2,...kmax}

|S N,k| + |LN,k| − |S LN,k|(
N
k

)
(|Σ| − 1)N−k

An upper bound on performance for these distribution types are 1 − Punif(s ∈ S N ∪ LN)

and 1−Pdens(s ∈ S N∪LN). As presented in Figure 6.5, the probability of selecting

an insolvable configuration using a uniform distribution decreases by a logarith-

mic scale, and, for N > 11, it drops below 0.01 with |Σ| = 2 and radius r = 3.

On the other hand, the insolvability for a density uniform distribution decreases

a magnitude slower and reaches 0.03 even for N = 200. That is due to the fact

that configurations with very few active cells are very often loosely-coupled. Also

fewer active cells means more symmetric configurations, since the repeated pat-

terns could be longer. Figure 6.3 compares an upper bound with the performance

of the best one-dimensional leader election CA—the improved strategy of mirror

particles.

N Uniform Dist. Density Uniform Dist.
Performance Upper Bound Performance Upper Bound

149 0.997 ∼ 1.0 0.945 0.966
593 0.997 ∼ 1.0 0.973 0.988

1001 0.996 ∼ 1.0 0.979 0.993
1301 0.995 ∼ 1.0 0.979 0.994

Table 6.3: Performance of the improved strategy of mirror particles, the best one-
dimensional binary cellular automaton with radius r = 3, compared to theoretical upper
bound performance. Both uniform and density-uniform distributions are considered.
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6.3.2 Two-Dimensional Upper Bound on Performance

As we showed in Section 6.2.2 enumeration of two-dimensional loosely-coupled

configurations is a generalized kings-placement problem, for which exists no uni-

versal closed formula. Here we are going to merge symmetric and loosely-coupled

configurations in order to derive upper bound on performance for two-dimensional

CAs. Similarly to the one-dimensional case, we need to enumerate configurations

that are both symmetric and loosely-coupled. However, since the elements of

Ln×n,k could not be properly characterized, we do not attempt to derive a closed

formula for symmetric loosely-coupled configurations |S n×n(v) ∩ Ln×n,k| given a

vector v ∈ Zn × Zn either.

Recall that as a result of Corollary 6.1.37, S n×n(v) ∩ Ln×n,k , ∅ implies |〈v〉| |

k. Note that the opposite implication does not have to hold. Also, the precise

number of symmetric loosely-coupled configurations depends on vector v and its

periodicity in both dimensions, however, we can bound it as

|S n×n(v) ∩ Ln×n,k| ≤ |L n×n
|〈v〉| ,

k
|〈v〉
|.

The equality holds for instance if v is diagonal, i.e., v = (a, a), however, if for

instance v = (1, 0) then |S n×n(v) ∩ Ln×n,k| = 0 for k > 0.

Definition 6.3.1. The square symmetric loosely-coupled configurations of size n2

with k active cells is

S Ln×n,k = S 1
n×n,k ∩ Ln×n,k.

Similarly to loosely-coupled configurations we approximate |S Ln×n,k| by sta-
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tistical sampling. More specifically, we randomly generate a symmetric config-

uration with k active cells, and then check whether the configuration is loosely-

coupled. We repeat this process 30, 000 times, and we multiple the fraction of

those configurations that are loosely-coupled with the total number of symmetric

configurations with k active cells |S 1
n×n,k|. For faster enumeration we can han-

dle the specific number of active cells without sampling. Trivially if the number

of active cells is zero, all symmetric loosely-coupled configurations are loosely

coupled. There exists no loosely-coupled configuration with a single active cell

(besides N = 1 case), and so neither a symmetric loosely-coupled configuration.

For a non-zero count the prime factors of N must divide the number of active cells

k.

Similarly to the one-dimensional case, we calculate the probability that a ran-

domly drawn configuration is insolvable using uniform and density-uniform dis-

tributions. The probability that a square two-dimensional configuration is insolv-

able is, therefore, given below.

Punif(s ∈ S n×n ∪ Ln×n) =
1
|Σ|n

2

∑
k∈{0,2,...kmax}

|S n×n,k| + |Ln×n,k| − |S Ln×n,k|

Pdens(s ∈ S n×n ∪ Ln×n) =
1

n2 + 1

∑
k∈{0,2,...kmax}

|S n×n,k| + |Ln×n,k| − |S Ln×n,k|(
n2

k

)
(|Σ| − 1)n2−k

An upper bound on performance for these distribution types are 1 − Punif(s ∈ S n×n ∪ Ln×n)

and 1 − Pdens(s ∈ S n×n ∪ Ln×n). As presented in Figure 6.6, the probability of se-

lecting an insolvable configuration using a uniform distribution decreases by a

logarithmic scale. On the other hand, the insolvability for density-uniform dis-
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Figure 6.6: Probability of selecting insolvable binary configurations for two-dimensional
symmetric and/or loosely-coupled configurations using uniform and density-uniform dis-
tributions and Moore neighborhood, i.e., a square neighborhood with radius r = 1.

tribution decreases a magnitude slower and reaches 0.0069 even for N = 402.

Similarly to the one-dimensional case that is due to the fact that density uniform

distribution prefers configurations with very few active cells, which are very often
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N = n2 Uniform Dist. Density Uniform Dist.
Performance Upper Bound Performance Upper Bound

192 0.987 ∼ 1.0 0.807 0.984
292 0.978 ∼ 1.0 0.765 0.990
392 0.908 ∼ 1.0 0.692 0.992

Table 6.4: Maximal performance of the best two-dimensional binary cellular automata
with Moore neighborhood from Sections 5.4.2.3 and 5.4.2.4 compared to theoretical upper
bound performance. Both uniform and density-uniform distributions are considered.

loosely-coupled and symmetric. Figure 6.4 compares an upper bound with the

performance of the best two-dimensional leader-electing CAs.
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The traveller has reached
the end of the journey!

Edmund Burke (1729-1797) 7
Conclusion

Leader election is a fundamental procedure of many distributed protocols and bi-

ological societies. In this thesis we successfully analyzed and solved the leader

election problem for one- and two-dimensional CAs. We showed that even mere

distributed system consisting of indistinguishable and uniform cells operating just

with a binary state is capable of emergent and complex dynamics enabling global

coordination of cells and ultimately leader election. Evolutionary process [28]

pushed CAs towards a creation of remarkable collective patterns known as do-

mains, particles and interactions [26]. The anonymous leader election imple-

mented by CAs is possible due to particle-mediated information exchange across

distances. In two dimensions, slowly-contracting regions connected by lines of

active cells propagate throughout the lattice and sweep any remaining active cells,

before shrinking to a single cell (leader). We also analyzed the perturbation sta-

bility of two-dimensional CAs and showed that the complex dynamics correlate

with CA’s performance on leader election.
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Our final evolutionary one- and two-dimensional CAs reached remarkably

high performance of 99% that scale well with respect to the system size. However,

the best one-dimensional CAs, such as, the (improved) strategy of mirror particles,

are often N-modulo restricted. Our model substantially reduced architectural re-

quirements of the problem and compared to known state-of-art distributed algo-

rithms we can claim that it is the simplest system satisfactory dealing with most

difficult anonymous, deterministic instance of leader election.

Furthermore, we showed that anonymous leader election, which is the most

difficult instance of the problem, implemented in one- or two-dimensional CAs

is principally insolvable. We identified two classes of configurations, symmet-

ric and loosely-coupled, which no CA could transform to a state with a single

active cell (a leader). We enumerated such configurations and formulated a corre-

sponding upper bound on the performance rate. Loosely-coupled configurations,

where active cells are too far from each other, are insolvable due to the fixed point

requirement for a final configuration. That is analogous to the so-called silent self-

stabilization [84] where a final, desired state of the system cannot change unless

it is perturbed from outside. To weaken the leader election definition and to make

loosely-coupled configurations solvable, we may say that the final configurations

do not have to be stable points and it is sufficient if only a leader cell keeps its state

fixed but all remaining cells are free to change to any non-leader state. That would

mean that the CA can compute even after a leader is elected. A new mandatory

constraint on the transition rule φ would be
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φ(ηi) =


1 ⇐⇒ #1ηi = 1, si = 1

∈ Σ \ {1} ⇐⇒ #1ηi = 1, si , 1

∈ Σ \ {1} ⇐⇒ #1ηi = 0


.

Note that for binary CAs, the original and weakened definitions are equal.

Therefore, to exploit the weakened definition for loosely-coupled configurations

we need more than 2 states. Also, because the second and third case allow tran-

sitions to any of the Σ \ {1} states, there exist many possible transition rules that

meet the weakened fixed-point requirement when |Σ| > 2.

The best one- and two-dimensional CAs, found by genetic algorithms, reach

the performance of 99% for uniform distribution, which is close to the theoret-

ical upper bound. Using a uniform distribution, the probability of selecting an

insolvable configuration decreases rapidly with the number of cells. For instance,

the number of insolvable configurations for one-dimensional binary CA with 25

cells is just 10−5. Therefore, the reliability of anonymous leader election could

be, in principle, minimized to a desired tolerance based on specific application

requirements.

Selected CA transition tables presented in this dissertation are provided in our

COEL framework at http://coel-sim.org/download. COEL framework is an

enterprise Java/Scala project built on Grails, Spring, Hibernate, GridGain tech-

nology stack providing a unified web environment for the definition and manipu-

lation of several unconventional computational models. The part relevant for this

thesis is the network module responsible for modeling, execution, performance

evaluation, and dynamics analysis of various networks, such as, CAs. If you wish
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to obtain an account please contact the author.

The presented results are generally applicable in the theory of distributed al-

gorithms and also at the elementary level of biology and social science. Last, but

not least we hope that this thesis illustrated how powerful self-organization is and

what processes are responsible for complex computation implemented by nature.

Leader election is also a key routine of cell differentiation, where initial symmetry

of newly developed organism has to be broken to allow structural heterogeneity

and a cell specialization.
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[37] P. Érdi. Complexity explained. Springer, 2007.

[38] G Bard Ermentrout and Leah Edelstein-Keshet. Cellular automata approaches to

biological modeling. Journal of theoretical Biology, 160(1):97–133, 1993.

[39] Faith E. Fich and Colette Johnen. A space optimal, deterministic, self-stabilizing,

leader election algorithm for unidirectional rings. In DISC ’01: Proceedings of the

15th International Conference on Distributed Computing, pages 224–239, London,

UK, 2001. Springer-Verlag.

[40] Michael Fischer and Hong Jiang. Self-stabilizing leader election in networks of

finite-state anonymous agents. In Principles of Distributed Systems, pages 395–

409. Springer-Verlag, 2006.

[41] G. N. Frederickson and N. A. Lynch. Electing a leader in a synchronous ring.

JACM, 34(1):98–115, 1987.

[42] Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal

of theoretical physics, (21):219–253, 1982.

[43] Niloy Ganguly, Pradipta Maji, Sandip Dhar, K. Biplab Sikdar, and P. Pal Chaud-

huri. Evolving cellular automata as pattern classifier. In ACRI ’01: Proceedings of

143



BIBLIOGRAPHY

the 5th International Conference on Cellular Automata for Research and Industry,

pages 56–68, London, UK, 2002. Springer-Verlag.

[44] M Gardner. The fantastic combinations of john conway’s new solitaire game “life”.

Scientific American, 223:120–123, 1970.

[45] Max Garzon. Cellular automata and discrete neural networks. Physica D: Nonlin-

ear Phenomena, 45(1):431–440, 1990.

[46] David Edward Goldberg et al. Genetic algorithms in search, optimization, and

machine learning, volume 412. Addison-wesley Reading Menlo Park, 1989.

[47] David Griffeath and Cristopher Moore. New constructions in cellular automata.

Oxford University Press, 2003.

[48] J. E. Hanson. The computation mechanics of cellular automata. PhD thesis, Uni-

versity Microfilms Intl, Ann Arbor, Michigan, 1993.

[49] J. E. Hanson and J. P. Crutchfield. The attractor-basin portrait of a cellular automa-

ton. Journal of statistical physics, 66(5/6):1415–1462, 1992.

[50] L. Higham and S. Myers. Self-stabilizing token circulation on anonymous message

passing rings. Technical report, University of Calgary, 1999.

[51] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular con-

figurations of processors. Commun. ACM, 23(11):627–628, 1980.

[52] J. H. Holland. Adaptation in natural and artificial systems. University of Michigan

Press, 1975.

[53] W. Hordijk. Dynamics, emergent computation, and evolution in cellular automata.

PhD thesis, University of New Mexico, Albuquerque, NM, 2000.

144



BIBLIOGRAPHY

[54] Wim Hordijk. The evca project: A brief history. Complexity, 18(5):15–19, 2013.

[55] Wim Hordijk, James P. Crutchfield, and Melanie Mitchell. Mechanisms of emer-

gent computation in cellular automata. In PPSN V: Proceedings of the 5th In-

ternational Conference on Parallel Problem Solving from Nature, pages 613–622,

London, UK, 1998. Springer-Verlag.

[56] A. Itai and M. Rodeh. Symmetry breaking in distributed network. In Proceeding of

the 22nd Annual IEEE Symp. of Foundations of Computer Science (FOCS), pages

245–260. IEEE Press, 1994.

[57] Gene Itkis, Chengdian Lin, and Janos Simon. Deterministic, constant space, self-

stabilizing leader election on uniform rings. In WDAG ’95: Proceedings of the 9th

International Workshop on Distributed Algorithms, pages 288–302, London, UK,

1995. Springer-Verlag.

[58] Stuart A Kauffman. Emergent properties in random complex automata. Physica

D: Nonlinear Phenomena, 10(1):145–156, 1984.

[59] David B. Knoester, Philip K. McKinley, and Charles A. Ofria. Using group se-

lection to evolve leadership in populations of self-replicating digital organisms. In

Proceedings of the 9th annual conference on Genetic and evolutionary computa-

tion, pages 293–300. ACM, 2007.

[60] J. R. Koza. Genetic programming: on the programming of computers by means of

natural selection. The MIT Press, Cambridge, MA, 1992.

[61] J. Lamprecht. Variable leadership in bar-headed geese (anser indicus) - an analysis

of pair and family departures. Trends in Ecology & Evolution, 122:105–120, 1992.

[62] Chris G Langton. Computation at the edge of chaos: Phase transitions and emer-

gent computation. Physica D: Nonlinear Phenomena, 42(1):12–37, 1990.

145



BIBLIOGRAPHY

[63] Christopher G Langton. Self-reproduction in cellular automata. Physica D: Non-

linear Phenomena, 10(1):135–144, 1984.

[64] G. Le Lann. Distributed systems, towards a formal approach. IFIP Congress, pages

155–160, 1977.

[65] Michael Larsen. The problem of kings. the electronic journal of combinatorics,

2(1):R18, 1995.

[66] Peter A. Lawrence. The Making of a Fly: The Genetics of Animal Design. Wiley-

Blackwell, April 1992.

[67] Joseph T Lizier, Mikhail Prokopenko, and Albert Y Zomaya. Detecting non-trivial

computation in complex dynamics. In Advances in Artificial Life, pages 895–904.

Springer, 2007.

[68] Qiming Lu and Christof Teuscher. Damage spreading in spatial and small-world

random boolean networks. arXiv preprint arXiv:0904.4052, 2009.

[69] David Lusseau and Larissa Conradt. The emergence of unshared consensus deci-

sions in bottlenose dolphins. Behavioral Ecology and Sociobiology, 2009.

[70] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1996.

[71] Manuel Marques-Pita and Luis Mateus Rocha. Conceptual structure in cellular

automata-the density classification task. In ALIFE, pages 390–397, 2008.

[72] Alain Mayer, Yoram Ofek, Rafail Ostrovsky, and Moti Yung. Self-stabilizing sym-

metry breaking in constant-space (extended abstract). In STOC ’92: Proceedings

of the twenty-fourth annual ACM symposium on Theory of computing, pages 667–

678, New York, NY, USA, 1992. ACM.

146



BIBLIOGRAPHY

[73] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1996.

[74] M. Mitchell, J. P. Crutchfield, and R. Das. Computer science application: Evolv-

ing cellular automata to perform computations. In T. Bäck, D. Fogel, and
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List of Symbols and Acronyms

Acronym Description

CA Cellular automaton

CM Computational mechanics

IC Initial configuration

EvCA Evolutionary Cellular Automata research group

DFA Deterministic finite state automaton

GA Genetic algorithm(s)
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